Page 69 - ESAM-1-2
P. 69

Engineering Science in
            Additive Manufacturing                                          Multi-material additive manufacturing of metals



            67.  Ostolaza M, Arrizubieta JI, Lamikiz A, Plaza S, Ortega N.   81.  Li R, Liu J, Shi Y, Wang L, Jiang W. Balling behavior of
               Latest developments to manufacture metal matrix    stainless steel and nickel powder during selective laser
               composites and functionally graded materials through AM:   melting  process.  Int J Adv Manuf Technol.  2012;59(9-
               A state-of-the-art review. Materials (Basel). 2023;16(4):1746.  12):1025-1035.
               doi: 10.3390/ma16041746                         82.  Wang D, Wu S, Fu F, et al. Mechanisms and characteristics
            68.  Ma  Z, Liu W, Li  W,  et al.  Additive  manufacturing  of   of spatter generation in SLM processing and its effect on the
               functional gradient materials: A review of research progress   properties. Mater Design. 2017;117:121-130.
               and challenges. J Alloys Compd. 2024;971:172642.  83.  Leung CLA, Marussi S, Towrie M, Atwood RC, Withers PJ,
            69.  Ju Y, Li C, Yang X, Ba L, Wang Y, Di X. Recent progress on   Lee PD. The effect of powder oxidation on defect formation in
               additive manufacturing of steel-based functionally graded   laser additive manufacturing. Acta Mater. 2019;166:294-305.
               materials. Mater Today Commun. 2024;40:109953.  84.  Mertens  R,  Dadbakhsh S,  Van  Humbeeck  J,  Kruth  JP.
            70.  Sanjeeviprakash K, Rajesh Kannan A, Siva Shanmugam N.   Application of base plate preheating during selective laser
               Additive manufacturing of metal-based functionally graded   melting. Proc CIRP. 2018;74:5-11.
               materials: Overview, recent advancements and challenges.   85.  Guan J, Wang Q. Laser powder bed fusion of dissimilar
               J Braz Soc Mech Sci Eng. 2023;45(5):241.           metal materials: A review. Materials. 2023;16(7):2757.
            71.  Srivastava M,  Rathee  S, Tiwari  A, Dongre  M. Wire arc   86.  Dzogbewu TC, Du Preez WB. Additive manufacturing of
               additive manufacturing of metals: A  review on processes,   Ti-based intermetallic alloys: A review and conceptualization
               materials and their behaviour.  Mater Chem Phys.   of a next-generation machine. Materials. 2021;14(15):4317.
               2023;294:126988.
                                                               87.  International  Organization  for  Standardization.
            72.  Yan L, Chen Y, Liou F. Additive manufacturing of   Additive Manufacturing-General Principles-Terminology.
               functionally graded metallic materials using  laser metal   United Kingdom: ISO/ASTM 52900; 2018.
               deposition. Addit Manuf. 2020;31:100901.
                                                               88.  Hasanov S, Alkunte S, Rajeshirke M,  et al. Review on
            73.  Dev Singh D, Arjula S, Raji Reddy A. Functionally graded   additive manufacturing of multi-material parts: Progress
               materials  manufactured  by  direct  energy  deposition:
               A review. Mater Today Proc. 2021;47:2450-2456.     and challenges. J Manuf Mater Process. 2021;6(1):4.
                                                               89.  Verma  A,  Kapil  A,  Klobčar  D,  Sharma  A. A  review  on
            74.  Tyagi SA, Manjaiah M. Laser additive manufacturing of   multiplicity in multi-material additive manufacturing:
               titanium-based functionally graded materials: A  review.   Process, capability, scale, and structure.  Materials.
               J Mater Eng Perform. 2022;31(8):6131-6148.
                                                                  2023;16(15):5246.
            75.  Zhang R, Jiang F, Xue L, Yu J. Review of additive
               manufacturing techniques for large-scale metal functionally   90.  Thompson  SM,  Bian  L,  Shamsaei  N,  Yadollahi  A.
               graded materials. Crystals. 2022;12(6):858.        An overview of Direct Laser Deposition for additive
                                                                  manufacturing; Part I: Transport phenomena, modeling and
            76.  Ghanavati R, Naffakh-Moosavy H. Additive manufacturing   diagnostics. Addit Manuf. 2015;8:36-62.
               of  functionally  graded  metallic  materials:  A  review  of
               experimental and numerical studies.  J  Mater Res Technol.   91.  Ning J, Zhu L, Wang S,  et al. Printability disparities in
               2021;13:1628-1664.                                 heterogeneous material combinations via laser directed
                                                                  energy deposition: A  comparative study.  Int J Extreme
            77.  Karimzadeh M, Basvoju D, Vakanski A, Charit I, Xu F,   Manuf. 2024;6(2):025001.
               Zhang X. Machine learning for additive manufacturing of
               functionally graded materials. Materials. 2024;17(15):3673.  92.  Feenstra DR, Banerjee R, Fraser HL, Huang A, Molotnikov
                                                                  A, Birbilis N. Critical review of the state of the art in multi-
            78.  Yang L, Miyanaji H, Ram DJ, Zandinejad A, Zhang S.   material fabrication via directed energy deposition.  Curr
               Functionally graded ceramic based materials using additive   Opin Solid State Mater Sci. 2021;25(4):100924.
               manufacturing: Review and progress. In: Shimamura  K,
               Kirihara  S, Akedo  J, Ohji T,  Naito M, editors.  Ceramic   93.  Svetlizky D, Zheng B, Vyatskikh A, et al. Laser-based directed
               Transactions Series. 1   ed., Vol. CCLVIII. United States:   energy deposition (DED-LB) of advanced materials. Mater
                               st
               Wiley; 2016. p. 43-55.                             Sci Eng A. 2022;840:142967.
            79.  Delacroix T, Lomello F, Schuster F, et al. Influence of build   94.  Frank Medina. Fundamental of Additive Manufacturing
               characteristics and chamber oxygen concentration on   for Production. Available from: https://www.nrc.gov/docs/
               powder degradation in laser powder bed fusion.  Powder   ml1816/ml18164a226.pdf [Last accessed on 2025 May 02].
               Technol. 2023;416:11823.                        95.  Svetlizky D, Das M, Zheng B,  et al. Directed energy
            80.  Lu SP, Fujii H, Nogi K, Sato T. Effect of oxygen content in   deposition (DED) additive manufacturing: Physical
               He–O  shielding gas on weld shape in ultra-deep penetration   characteristics, defects, challenges and applications. Mater
                    2
               TIG. Sci Technol Weld Join. 2007;12(8):689-695.    Today. 2021;49:271-295.

            Volume 1 Issue 2 (2025)                         37                         doi: 10.36922/ESAM025180010
   64   65   66   67   68   69   70   71   72   73   74