Page 14 - GPD-2-1
P. 14

Gene & Protein in Disease                                                     AI-based drug repositioning



               Vet Med, 53(12): 123–127.                          COVID-19 based on mixed graph network and ion channel.
                                                                  Math Biosci Eng, 19(4): 3269–3284.
            3.   Nelson BS, Kremer DM, Lyssiotis CA, 2018, New tricks for
               an old drug. Nat Chem Biol, 14: 990–991.        17.  Wall ME, Rechtsteiner A, Rocha LM, 2002, Singular
                                                                  Value Decomposition and Principal Component Analysis.
            4.   Li FT, Liu MX, Wang XB, et al., 2022, Progress of COVID-19
               drug repositioning study. China Pharm Biotechnol, 17(4): 8.  Springer, Germany.
                                                               18.  Shen M, Xiao Y, Golbraikh A, et al., 2003, Development and
            5.   Huang F, Yang HF, Zhu X, 2021, Advances in the application
               of artificial intelligence in new drug discovery. Adv Pharm,   validation of k-nearest-neighbor QSPR models of metabolic
               2021(7): 502–511.                                  stability of drug candidates. J Med Chem, 46(3): 3013–3020.
            6.   Jarada  TN,  Rokne  JG,  Alhajj  R,  2020,  A  review  of      https://doi.org/10.1021/jm020491t
               computational drug repositioning: strategies, approaches,   19.  Susnow RG, Dixon SL, 2003, Use of robust classification
               opportunities, challenges, and directions.  J  Cheminform,   techniques for the prediction of human cytochrome
               12(1): 46.                                         P450  2D6 inhibition.  J  Chem Inform Comput Sci, 43(4):
               https://doi.org/10.1186/s13321-020-00450-7         1308–1315.
            7.   Cheng, Fei X, Liu,  et al., 2012, Prediction of drug-target   20.  Christianini N, Shawe-Taylor J, 2002, Support Vector
               interactions and drug repositioning via network-based   Machines and other Kernel-based Learning Methods.
               inference. PLoS Comput Biol, 8(5): e1002503.       Cambridge University Press, United Kingdom.
               https://doi.org/10.1371/journal.pcbi.1002503    21.  Guengerich FP, 2006, Cytochrome P450s and other enzymes
                                                                  in drug metabolism and toxicity. AAPS J, 8(1): E101–E111.
            8.   Guney E, Menche J, Vidal M, et al., 2016, Network-based in
               silico drug efficacy screening. Nat Commun, 7(1): 10331.   22.  Cheng F, Yu Y, Shen J,  et al., 2011, Classification of
                                                                  cytochrome  P450  inhibitors  and  noninhibitors  using
               https://doi.org/10.1038/ncomms10331                combined classifiers. J Chem Inform Model, 51: 996–1011.

            9.   Wang W, Yang S, Zhang X, et al., 2014, Drug repositioning      https://doi.org/10.1021/ci200028n
               by integrating target information through a heterogeneous
               network model. Bioinformatics, 30(20): 2923–2930.   23.  Napolitano F, Zhao Y, Moreira VM,  et al., 2013, Drug
                                                                  repositioning: A machine-learning approach through data
               https://doi.org/10.1093/bioinformatics/btu403      integration. J Cheminform, 5(1): 30.
            10.  Chen, X, Liu, Yan GY, 2012, Drug-target interaction   24.  Gottlieb A, Stein GY, Ruppin E, et al., PREDICT: A method
               prediction by random walk on the heterogeneous network.   for inferring novel drug indications with application to
               Mol Biosyst, 8(7): 1970–1978.                      personalized medicine. Mol Syst Biol, 7(1): 496.
            11.  Olayan RS, Haitham A, Bajic VB, 2018, DDR: Efficient   https://doi.org/10.1038/msb.2011.26
               computational method to predict drug–target interactions
               using graph mining and machine learning approaches.   25.  Gönen M, 2012, Predicting drug-target interactions from
               Bioinformatics, 34(7): 1164–1173.                  chemical and genomic kernels using Bayesian matrix
                                                                  factorization. Bioinformatics, 28(18): 2304–2310.
               https://doi.org/10.1093/bioinformatics/btx731
                                                                   https://doi.org/10.1093/bioinformatics/bts360
            12.  Peng J, Li J, Shang X, 2020, A learning-based method
               for drug-target interaction prediction based on feature   26.  Aliper A, Plis S, Artemov A,  et al., 2016, Deep learning
               representation learning  and  deep  neural  network.  BMC   applications for predicting pharmacological properties of
               Bioinformatics, 21(Suppl 13): 394.                 drugs and drug repurposing using transcriptomic data. Mol
                                                                  Pharm, 13(7): 2524–2530.
            13.  Ji B, You ZH, Jiang HJ, et al., 2020, Prediction of drug-target
               interactions from multi-molecular network based on LINE      https://doi.org/10.1021/acs.molpharmaceut.6b00248
               network representation method. J Transl Med, 18(1): 347.   27.  Segler MH, Preuss M, Waller MP, 2018, Planning chemical
               https://doi.org/10.1186/s12967-020-02490-x         syntheses with deep neural networks and symbolic AI.
                                                                  Nature, 555(7698): 604–610.
            14.  Lu XG, Liu F, Li JX, et al., 2021, A drug target prediction
               method based on multi-source data fusion and network      https://doi.org/10.1038/nature25978
               structure perturbation CN112420126A. China: Hunan   28.  Hughes TB, Swamidass SJ, 2017, Deep learning to predict
               Province.
                                                                  the formation of quinone species in drug metabolism. Chem
            15.  He JY, Yang XX, Gong Z, 2021. A computational drug   Res Toxicol, 30(2): 642–656.
               repositioning method  based on  memory  network  and   29.  Turk S, Merget B, Rippmann F,  et al., Coupling matched
               attention CN112331275A. China: Jiangsu Province.
                                                                  molecular pairs with machine learning for virtual compound
            16.  Wang X, Li Q, Liu Y,  et al., 2022, Drug repositioning of   optimization. J Chem Inform Model, 57(12): 3079–3085.


            Volume 2 Issue 1 (2023)                         8                      https://doi.org/10.36922/gpd.v1i3.201
   9   10   11   12   13   14   15   16   17   18   19