Page 46 - GPD-2-1
P. 46

Gene & Protein in Disease                          Therapeutic opportunities in hydrogen sulfide for cancer research



                2801–2808.                                         glutathione and cystathionine  β-synthase in ovarian
                                                                   cancer treatment by selenium–chrysin polyurea dendrimer
                https://doi.org/10.1016/j.cellsig.2014.08.023
                                                                   nanoformulation. Nutrients, 11(10): 2523.
            249.  Wang YH, Huang JT, Chen WL, et al., 2019, Dysregulation
                of cystathionine  γ‐lyase promotes prostate cancer      https://doi.org/10.3390/nu11102523
                progression and metastasis. EMBO Rep, 20(10): e45986.   260.  Chao C, Zatarain JR, Ding Y, et al., 2016, Cystathionine-β-
                https://doi.org/10.15252/embr.201845986            synthase inhibition for colon cancer: Enhancement of the
                                                                   efficacy of aminooxyacetic acid via the prodrug approach.
            250.  Kawahara B, Moller T, Hu-Moore K, et al., 2017, Attenuation   Mol Med, 22(1): 361–379.
                of antioxidant capacity in human breast cancer cells by
                carbon monoxide through inhibition of cystathionine      https://doi.org/10.2119/molmed.2016.00102
                β-synthase activity: implications in chemotherapeutic   261.  Szabo C, Coletta C, Chao C, et al., 2013, Tumor-
                drug sensitivity. J Med Chem, 60(19): 8000–8010.   derived hydrogen sulfide, produced by cystathionine-β-
                https://doi.org/10.1021/acs.jmedchem.7b00476       synthase, stimulates bioenergetics, cell proliferation, and
                                                                   angiogenesis in colon cancer. Proc Natl Acad Sci, 110(30):
            251.  Zhang L, Qi Q, Yang J, et al., 2015, An anticancer role of   12474–12479.
                hydrogen sulfide in human gastric cancer cells. Oxid Med
                Cell Longev, 2015: 636410.                         https://doi.org/10.1073/pnas.1306241110
                https://doi.org/10.1155/2015/636410            262.  Ascenção K, Dilek N, Augsburger F, et al., 2021,
                                                                   Pharmacological induction of mesenchymal-epithelial
            252.  Wang L, Cai H, Hu Y,  et  al., 2018,  A pharmacological   transition via inhibition of H2S biosynthesis and
                probe identifies cystathionine β-synthase as a new negative   consequent suppression of ACLY activity in colon cancer
                regulator for ferroptosis. Cell Death Dis, 9(10): 1005.   cells. Pharmacol Res, 165: 105393.
                https://doi.org/10.1038/s41419-018-1063-2          https://doi.org/10.1016/j.phrs.2020.105393
            253.  Sanokawa-Akakura R, Ostrakhovitch EA, Akakura S, et al.,   263.  Niu W, Chen F, Wang J,  et al., 2018, Antitumor effect
                2014, A H2S-Nampt dependent energetic circuit is critical   of sikokianin C, a selective cystathionine  β-synthase
                to survival and cytoprotection from damage in cancer   inhibitor, against human colon cancer in vitro and in vivo.
                cells. PloS One, 9(9): e108537.                    Medchemcomm, 9(1): 113–120.
                https://doi.org/10.1371/journal.pone.0108537       https://doi.org/10.1039/c7md00484b
            254.  Kim  J,  Hong  SJ,  Park  JH,  et  al.,  2009,  Expression   264.  Zhang M, Li J, Huang B, et al., 2020, Cystathionine  β
                of cystathionine  β-synthase is downregulated in   synthase/hydrogen sulfide signaling in multiple myeloma
                hepatocellular carcinoma and associated with poor   regulates cell proliferation and apoptosis. J Environ Pathol
                prognosis. Oncol Rep, 21(6): 1449–1454.            Toxicol Oncol, 39(3): 281–290.
                https://doi.org/10.3892/or_00000373                https://doi.org/10.1615/JEnvironPatholToxicolOncol.2020034851
            255.  Zhang J, Xie Y, Xu Y, et al., 2011, Hydrogen sulfide   265.  Govar AA, Törő G, Szaniszlo P, et al., 2020, 3‐Mercaptopyruvate
                contributes to hypoxia-induced radioresistance on   sulfurtransferase supports endothelial cell angiogenesis and
                hepatoma cells. J Radiat Res, 52(5): 622–628.      bioenergetics. Br J Pharmacol, 177(4): 866–883.
                https://doi.org/10.1269/jrr.11004                  https://doi.org/10.1111/bph.14574
            256.  Wang L, Han H, Liu Y, et al., 2018, Cystathionine   266.  Augsburger F, Randi EB, Jendly M, et al., 2020, Role of
                β-synthase induces multidrug resistance and metastasis in   3-mercaptopyruvate sulfurtransferase in the regulation
                hepatocellular carcinoma. Curr Mol Med, 18(7): 496–506.   of proliferation, migration, and bioenergetics in murine
                https://doi.org/10.2174/1566524019666181211162754  colon cancer cells. Biomolecules, 10(3): 447.
            257.  Wang L, Yang Z, Wu Z, et al., 2020, Increased expression      https://doi.org/10.3390/biom10030447
                of cystathionine beta-synthase and chemokine ligand 21   267.  Bantzi M, Augsburger F, Loup J, et al., 2021, Novel aryl-
                is closely associated with poor prognosis in extrahepatic   substituted pyrimidones as inhibitors of 3-mercaptopyruvate
                cholangiocarcinoma. Medicine (Baltimore), 99(38): e22255.   sulfurtransferase  with antiproliferative  efficacy  in colon
                https://doi.org/10.1097/MD.0000000000022255        cancer. J Med Chem, 64(9): 6221–6240.
            258.  Liu  N,  Lin  X,  Huang  C,  2020,  Activation  of  the  reverse      https://doi.org/10.1021/acs.jmedchem.1c00260
                transsulfuration pathway through NRF2/CBS confers   268.  Bronowicka-Adamska P, Bentke A, Lasota M, et al.,
                erastin-induced ferroptosis resistance. Br J Cancer, 122(2):   2020, Effect of S-allyl–l-cysteine on MCF-7 cell line
                279–292.
                                                                   3-mercaptopyruvate  sulfurtransferase/sulfane  sulfur
            259.  Santos I, Ramos C, Mendes C, et al., 2019, Targeting   system, viability and apoptosis. Int J Mol Sci, 21(3): 1090.


            Volume 2 Issue 1 (2023)                         31                     https://doi.org/10.36922/gpd.v2i1.164
   41   42   43   44   45   46   47   48   49   50   51