Page 53 - GPD-2-1
P. 53
Gene & Protein in Disease NQO2 and dopamine toxicity versus detoxification
29. Asanuma M, Miyazaki I, Diaz-Corrales FJ, et al., 2004, 40. King CD, Rios GR, Green MD, et al., 2000, UDP-
Quinone formation as dopaminergic neuron-specific glucuronosyltransferases. Curr Drug Metab, 1: 143–161.
oxidative stress in the pathogenesis of sporadic Parkinson’s https://doi.org/10.2174/1389200003339171
disease and neurotoxin-induced parkinsonism. Acta Med
Okayama, 58: 221–233. 41. Ghosh C, Hossain M, Puvenna V, et al., 2013, Expression
and functional relevance of UGT1A4 in a cohort of human
https://doi.org/10.18926/AMO/32105 drug-resistant epileptic brains. Epilepsia, 54: 1562–1570.
30. Miyazaki I, Asanuma M, 2008, Dopaminergic neuron- https://doi.org/10.1111/epi.12318
specific oxidative stress caused by dopamine itself. Acta Med
Okayama, 62: 141–150. 42. Ouzzine M, Gulberti S, Ramalanjaona N, et al., 2014, The
UDP-glucuronosyltransferases of the blood-brain barrier:
https://doi.org/10.18926/AMO/30942 Their role in drug metabolism and detoxication. Front Cell
31. Sulzer D, Zecca L, 2000, Intraneuronal dopamine-quinone Neurosci, 8: 349.
synthesis: A review. Neurotox Res, 1: 181–195. https://doi.org/10.3389/fncel.2014.00349
https://doi.org/10.1007/BF03033289 43. Kutsuno Y, Hirashima R, Sakamoto M, et al., 2015,
32. Hattoria N, Wanga M, Taka H, et al., 2009, Toxic effects of Expression of UDP-glucuronosyltransferase 1 (UGT1) and
dopamine metabolism in Parkinson’s disease. Parkinsonism glucuronidation activity toward endogenous substances
Relat Disord, 15 Suppl 1: S35–S38. in humanized UGT1 mouse brain. Drug Metab Dispos,
43: 1071–1076.
https://doi.org/10.1016/S1353-8020(09)70010-0
https://doi.org/10.1124/dmd.115.063719
33. Boutin JA, 1987, Indirect evidences of UDP-
glucuronosyltransferase heterogeneity: how can it help 44. El-Bachá RS, Leclerc S, Netter P, et al., 2000, Glucuronidation
purification? Drug Metab Rev, 18: 517–551. of apomorphine. Life Sci, 67: 1735–1745.
https://doi.org/10.3109/03602538708994131 https://doi.org/10.1016/s0024-3205(00)00764-5
34. Jackson MR, Fournel-Gigleux S, Harding D, et al., 1988, 45. Kilpatrick GJ, Smith TW, 2005, Morphine-6-glucuronide:
Examination of the substrate specificity of cloned rat Actions and mechanisms. Med Res Rev, 25: 521–544.
kidney phenol UDP-glucuronyltransferase expressed in https://doi.org/10.1002/med.20035
COS-7 cells. Mol Pharmacol, 34: 638–642.
46. Landsberg L, Berardino MB, Stoff J, et al., 1978, Further
35. Testa B, Krämer SD, 2007, The biochemistry of drug studies on catechol uptake and metabolism in rat small
metabolism an introduction: Part 2. Redox reactions and bowel in vivo: (1) A quantitatively significant process with
their enzymes. Chem Biodivers, 4: 257–405. distinctive structural specifications; and (2) the formation
https://doi.org/10.1002/cbdv.200790032 of a dopamine glucuronide reservoir after chronic l-dopa
feeding. Biochem Pharmacol, 27: 1365–1371.
36. Renaud HJ, Cui JY, Khan M, et al., 2011, Tissue distribution
and gender-divergent expression of 78 cytochrome P450 https://doi.org/10.1016/0006-2952(78)90121-1
mRNAs in mice. Toxicol Sci, 124: 261–277. 47. Alexander N, Yoneda S, Vlachakis ND, et al., 1984, Role of
https://doi.org/10.1093/toxsci/kfr240 conjugation and red blood cells for inactivation of circulating
catecholamines. Am J Physiol, 247: R203–R207.
37. Tourancheau A, Rouleau M, Guauque-Olarte S, et al., 2018,
Quantitative profiling of the UGT transcriptome in human https://doi.org/10.1152/ajpregu.1984.247.1.R203
drug-metabolizing tissues. Pharmacogenomics J, 18: 251–261. 48. Gaudin C, Ruget G, Selz F, et al., 1985, Free and conjugated
https://doi.org/10.1038/tpj.2017.5 catecholamines in digestive tissues of rats. Life Sci,
37: 1469–1474.
38. Suleman FG, Ghersi-Egea JF, Leininger-Muller B, et al., 1993,
Uridine diphosphate-glucuronosyltransferase activities in https://doi.org/10.1016/0024-3205(85)90177-8
rat brain microsomes. Neurosci Lett, 161: 219–222. 49. Berndt TJ, MacDonald A, Walikonis R, et al., 1993, Excretion
https://doi.org/10.1016/0304-3940(93)90298-y of catecholamines and metabolites in response to increased
dietary phosphate intake. J Lab Clin Med, 122: 80–84.
39. Leclerc S, Heydel JM, Amossé V, et al., 2002, Glucuronidation
of odorant molecules in the rat olfactory system: Activity, 50. Azoui R, Schneider J, Dong WX, et al., 1997, Red blood cells
expression and age-linked modifications of UDP- participate in the metabolic clearance of catecholamines in
glucuronosyltransferase isoforms, UGT1A6 and UGT2A1, the rat. Life Sci, 60: 357–367.
and relation to mitral cell activity. Brain Res Mol Brain Res, https://doi.org/10.1016/s0024-3205(96)00659-5
107: 201–213.
51. Itäaho K, Court MH, Uutela P, et al., 2009, Dopamine is a
https://doi.org/10.1016/s0169-328x(02)00455-2 low-affinity and high-specificity substrate for the human
Volume 2 Issue 1 (2023) 7 https://doi.org/10.36922/gpd.227

