Page 54 - GPD-2-1
P. 54

Gene & Protein in Disease                                     NQO2 and dopamine toxicity versus detoxification



               UDP-glucuronosyltransferase 1A10.  Drug Metab Dispos,   62.  Gould NL, Elkobi A, Edry E,  et  al.,  2020, Muscarinic-
               37: 768–775.                                       dependent miR-182 and QR2 expression regulation in
                                                                  the anterior insula enables novel taste learning. eNeuro, 7:
               https://doi.org/10.1124/dmd.108.025692
                                                                  ENEURO.0067-20.2020.
            52.  Uutela P, Karhu L, Piepponen P, et al., 2009, Discovery of      https://doi.org/10.1523/ENEURO.0067-20.2020
               dopamine glucuronide in rat and mouse brain microdialysis
               samples using liquid chromatography tandem mass   63.  Rappaport AN, Jacob E, Sharma V, et al., 2015, Expression
               spectrometry. Anal Chem, 81: 427–434.              of quinone reductase-2 in the cortex is a muscarinic
                                                                  acetylcholine  receptor-dependent  memory  consolidation
               https://doi.org/10.1021/ac801846w                  constraint. J Neurosci, 35: 15568–15581.
            53.  Suominen T, Uutela P, Ketola RA, et al., 2013, Determination      https://doi.org/10.1523/JNEUROSCI.1170-15.2015
               of serotonin and dopamine metabolites in human brain
               microdialysis and cerebrospinal fluid samples by UPLC-MS/  64.  Hashimoto T, Nakai M, 2011, Increased hippocampal
               MS: Discovery of intact glucuronide and sulfate conjugates.   quinone reductase 2 in Alzheimer’s disease. Neurosci Lett,
               PLoS One, 8: e68007.                               502: 10–12.
               https://doi.org/10.1371/journal.pone.0068007       https://doi.org/10.1016/j.neulet.2011.07.008
            54.  Wang PC, Kuchel O, Buu NT, et al., 1983, Catecholamine   65.  Janda  E,  Lascala  A,  Carresi  C, et al.,  2015,  Parkinsonian
               glucuronidation:  An  important  metabolic  pathway  for   toxin-induced oxidative stress inhibits basal autophagy in
               dopamine in the rat. J Neurochem, 40: 1435–1440.   astrocytes via NQO2/quinone oxidoreductase 2: Implications
                                                                  for neuroprotection. Autophagy, 11: 1063–1080.
               https://doi.org/10.1111/j.1471-4159.1983.tb13587.x
                                                                  https://doi.org/10.1080/15548627.2015.1058683
            55.  Chhour M, Perio P, Gayon R,  et  al.,  2021, Association
               of NQO2 with UDP-glucuronosyltransferases reduces   66.  Harada S, Fujii C, Hayashi A, et al., 2001, An association
               menadione toxicity in neuroblastoma cells. Front Pharmacol,   between idiopathic Parkinson’s disease and polymorphisms
                                                                  of phase II detoxification enzymes: Glutathione S-transferase
               12: 660641.
                                                                  M1 and quinone oxidoreductase 1 and 2. Biochem Biophys
               https://doi.org/10.3389/fphar.2021.660641          Res Commun, 288: 887–892.
            56.  Mailliet F, Ferry G, Vella F, et al., 2004, Organs from mice      https://doi.org/10.1006/bbrc.2001.5868
               deleted for NRH: quinone oxidoreductase 2 are deprived of   67.  Wang W, Le WD, Pan T, et  al.,  2008, Association
               the melatonin binding site MT3. FEBS Lett, 578: 116–120.   of  NRH:  quinone oxidoreductase  2  gene promoter
               https://doi.org/10.1016/j.febslet.2004.10.083      polymorphism with higher gene expression and increased
                                                                  susceptibility to Parkinson’s disease.  J  Gerontol A Biol Sci
            57.  Fu Y, Buryanovskyy L, Zhang Z, 2008, Quinone reductase 2 is   Med Sci, 63: 127–134.
               a catechol quinone reductase. J Biol Chem, 283: 23829–23835.
                                                                  https://doi.org/10.1093/gerona/63.2.127
               https://doi.org/10.1074/jbc.M801371200
                                                               68.  Harada S, Tachikawa H, Kawanishi Y, 2003, A possible
            58.  Ross D, Kepa JK, Winski SL, et al., 2000, NAD(P)H: quinone   association between an insertion/deletion polymorphism
               oxidoreductase 1 (NQO1): Chemoprotection, bioactivation,   of the NQO2 gene and schizophrenia.  Psychiatr Genet,
               gene regulation and genetic polymorphisms.  Chem  Biol   13: 205–209.
               Interact, 129: 77–97.
                                                                  https://doi.org/10.1097/00041444-200312000-00003
               https://doi.org/10.1016/s0009-2797(00)00199-x
                                                               69.  Okada S, Farin FM, Stapleton P, et al., 2005, No associations
            59.  Ross D, Siegel D, 2004, NAD(P)H: quinone oxidoreductase 1   between Parkinson’s disease and polymorphisms of the
               (NQO1, DT-diaphorase), functions and pharmacogenetics.   quinone  oxidoreductase  (NQO1,  NQO2)  genes.  Neurosci
               Methods Enzymol, 382: 115–144.                     Lett, 375: 178–180.
               https://doi.org/10.1016/S0076-6879(04)82008-1      https://doi.org/10.1016/j.neulet.2004.11.009
            60.  Goodman RP, Calvo SE, Mootha VK, 2018, Spatiotemporal   70.  Wang W, Jaiswal AK, 2004, Sp3 repression of polymorphic
               compartmentalization of hepatic NADH and NADPH     human NRH: quinone oxidoreductase 2 gene promoter. Free
               metabolism. J Biol Chem, 293: 7508–7516.           Radic Biol Med, 37: 1231–1243.
               https://doi.org/10.1074/jbc.TM117.000258           https://doi.org/10.1016/j.freeradbiomed.2004.06.042
            61.  Gould NL, Sharma V, Hleihil M, et al.,  2020, Dopamine-  71.  Benoit CE, Bastianetto S, Brouillette J, et al., 2010, Loss of
               dependent QR2 pathway activation in CA1 interneurons   quinone reductase 2 function selectively facilitates learning
               enhances novel memory formation. J Neurosci, 40: 8698–8714.   behaviors. J Neurosci, 30: 12690–12700.
               https://doi.org/10.1523/JNEUROSCI.1243-20.2020     https://doi.org/10.1523/JNEUROSCI.2808-10.2010


            Volume 2 Issue 1 (2023)                         8                         https://doi.org/10.36922/gpd.227
   49   50   51   52   53   54   55   56   57   58   59