Page 55 - GPD-2-1
P. 55

Gene & Protein in Disease                                     NQO2 and dopamine toxicity versus detoxification



            72.  Brouillette J,  Quirion R,  2008,  Transthyretin:  A  key  gene   82.  Boutin JA, Thomassin J, Siest G, et al., 1985, Heterogeneity
               involved in the maintenance of memory capacities during   of  hepatic  microsomal  UDP-glucuronosyltransferase
               aging. Neurobiol Aging, 29: 1721–1732.             activities. Biochem Pharmacol, 34: 2235–2249.
               https://doi.org/10.1016/j.neurobiolaging.2007.04.007     https://doi.org/10.1016/0006-2952(85)90777-4
            73.  Lin R, Liang J, Luo M, 2021, The raphe dopamine system:   83.  Mackenzie PI, Bock KW, Burchell B, et al., 2005, Nomenclature
               roles in salience encoding, memory expression, and   update for the mammalian UDP glycosyltransferase (UGT)
               addiction. Trends Neurosci, 44: 366–377.           gene superfamily. Pharmacogenet Genomics, 15: 677–685.
               https://doi.org/10.1016/j.tins.2021.01.002         https://doi.org/10.1097/01.fpc.0000173483.13689.56
            74.  Voronin MV, Kadnikov IA, Zainullina LF, et al.,  2021,   84.  Ito T, Katagiri C, Ikeno S, et al.,  2001, Phenobarbital
               Neuroprotective properties of quinone reductase 2 inhibitor   following phototherapy for Crigler-Najjar syndrome type II
               M-11, a 2-mercaptobenzimidazole derivative. Int J Mol Sci,   with good fetal outcome: A case report. J Obstet Gynaecol
               22: 13061.                                         Res, 27: 33–35.

               https://doi.org/10.3390/ijms222313061              https://doi.org/10.1111/j.1447-0756.2001.tb01212.x
            75.  Umek N, Geršak B, Vintar N, et al.,  2018,  Dopamine   85.  Passuello V, Puhl AG, Wirth S, et al.,  2009, Pregnancy
               autoxidation is controlled by acidic pH. Front Mol Neurosci,   outcome in maternal Crigler-Najjar syndrome type  II:
               11: 467.                                           A case report and systematic review of the literature. Fetal
                                                                  Diagn Ther, 26: 121–126.
               https://doi.org/10.3389/fnmol.2018.00467
                                                                  https://doi.org/10.1159/000238122
            76.  Váradi C, 2020, Clinical features of Parkinson’s disease: The   86.  Chen B, Tong X, Zhang X, et al., 2022, Sulfation modification
               evolution of critical symptoms. Biology (Basel), 9: 103.
                                                                  of dopamine in brain regulates aggregative behavior of
               https://doi.org/10.3390/biology9050103             animals. Natl Sci Rev, 9: nwab163.
            77.  Diederich  NJ,  Uchihara  T,  Grillner  S, et al.,  2020,  The      https://doi.org/10.1093/nsr/nwab163
               Evolution-Driven Signature of Parkinson’s Disease. Trends   87.  Idris M, Mitchell DJ, Gordon R, et al., 2020, Interaction of
               Neurosci, 43: 475–492.                             the brain-selective sulfotransferase SULT4A1 with other
               https://doi.org/10.1016/j.tins.2020.05.001         cytosolic sulfotransferases: Effects on protein expression
                                                                  and function. Drug Metab Dispos, 48: 337–344.
            78.  Nobili A, Latagliata EC, Viscomi MT, et al., 2017, Dopamine
               neuronal loss contributes to memory and reward dysfunction      https://doi.org/10.1124/dmd.119.089714
               in a model of Alzheimer’s disease. Nat Commun, 8: 14727.   88.  Bock  KW,  Bock-Hennig  BS,  2010,  UDP-
               https://doi.org/10.1038/ncomms14727                glucuronosyltransferases (UGTs): From purification of
                                                                  Ah-receptor-inducible UGT1A6 to coordinate regulation of
            79.  Kaldun JC, Lone SR, Camps AMH, et al., 2021, Dopamine,   subsets of CYPs, UGTs, and ABC transporters by nuclear
               sleep, and neuronal excitability modulate amyloid-β-  receptors. Drug Metab Rev, 42: 6–13.
               mediated forgetting in Drosophila. PLoS Biol, 19: e3001412.
                                                                  https://doi.org/10.3109/03602530903205492
               https://doi.org/10.1371/journal.pbio.3001412
                                                               89.  Yeager  RL,  Reisman  SA, Aleksunes  LM, et al.,  2009,
            80.  Segura-Aguilar J, Paris I, Muñoz P, et al., 2014, Protective and   Introducing the “TCDD-inducible AhR-Nrf2 gene battery”.
               toxic roles of dopamine in Parkinson’s disease. J Neurochem,   Toxicol Sci, 111: 238–246.
               129: 898–915.
                                                                  https://doi.org/10.1093/toxsci/kfp115
               https://doi.org/10.1111/jnc.12686
                                                               90.  Rashid  MH, Babu D,  Siraki  AG, 2021, Interactions  of the
            81.  Wakamatsu K, Nakao K, Tanaka H, et al., 2019, The oxidative   antioxidant enzymes NAD(P)H: Quinone oxidoreductase
               pathway  to  dopamine-protein  conjugates  and  their  pro-  1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2)
               oxidant activities: Implications for the neurodegeneration of   with pharmacological agents, endogenous biochemicals and
               Parkinson’s disease. Int J Mol Sci, 20: 2575.      environmental contaminants. Chem Biol Interact, 345: 109574.
               https://doi.org/10.3390/ijms20102575               https://doi.org/10.1016/j.cbi.2021.109574











            Volume 2 Issue 1 (2023)                         9                         https://doi.org/10.36922/gpd.227
   50   51   52   53   54   55   56   57   58   59   60