Page 22 - GPD-3-1
P. 22

Gene & Protein in Disease                                                  Enhancing fertility with CRISPR



               doi: 10.1093/humupd/dmu051                         and safety testing of targeted therapies.  Toxicol Pathol.
                                                                  2016;44(3):346-357.
            70.  Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M.
               Epigenetic changes and assisted reproductive technologies.      doi: 10.1177/0192623315609688
               Epigenetics. 2020;15(1-2):12-25.
                                                               82.  Kang Y, Chu C, Wang F, Niu Y. CRISPR/Cas9-mediated
               doi: 10.1080/15592294.2019.1646572                 genome editing in nonhuman primates. Dis Models Mech.
                                                                  2019;12(10):dmm039982.
            71.  Park  JE,  Sasaki  E.  Assisted  reproductive  techniques  and
               genetic manipulation in the common marmoset.  ILAR J.      doi: 10.1242/dmm.039982
               2020;61(2-3):286-303.
                                                               83.  Madeja Z, Pawlak P, Piliszek A. Beyond the mouse: Non-
               doi: 10.1093/ilar/ilab002                          rodent  animal  models  for  study  of  early  mammalian
                                                                  development and  biomedical  research.  Int J Dev Biol.
            72.  Novakovic B, Lewis S, Halliday J, et al. Assisted reproductive
               technologies are associated with limited epigenetic   2019;63(3-4-5):187-201.
               variation at birth that largely resolves by adulthood. Nature      doi: 10.1387/ijdb.180414ap
               Communications. 2019;10(1):3922.
                                                               84.  Choi CQ. CRISPR meets its match.  ACS Cent Sci.
               doi: 10.1038/s41467-019-11929-9                    2021;7(5):699-701.
            73.  Ramos‐Ibeas P, Heras S, Gómez‐Redondo I, et al. Embryo      doi: 10.1021/acscentsci.1c00427
               responses to stress induced by assisted reproductive   85.  Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal
               technologies. Mol Reprod Dev. 2019;86(10):1292-1306.
                                                                  models in biomedical research: A  review.  Lab Anim Res.
               doi: 10.1002/mrd.23119                             2022;38(1):18.
            74.  Gutási A, Hammer SE, El-Matbouli M, Saleh M. Review:      doi: 10.1186/s42826-022-00128-1
               Recent applications of gene editing in fish species and   86.  Zhong L, Huang Y, He J, et al. Generation of in situ CRISPR-
               aquatic medicine. Animals (Basel). 2023;13(7):1250.
                                                                  mediated primary and metastatic cancer from monkey liver.
               doi: 10.3390/ani13071250                           Signal Transduct Target Ther. 2021;6(1):411.
            75.  Farquhar CM,  Bhattcharya  S, Repping S,  et al. Female      doi: 10.1038/s41392-021-00799-7
               subfertility. Nat Rev Dis Primers. 2019;5:7.
                                                               87.  Wan H, Feng C, Teng F, et al. One-step generation of p53
               doi: 10.1038/s41572-018-0058-8                     gene biallelic mutant Cynomolgus monkey via the CRISPR/
                                                                  Cas system. Cell Res. 2015;25(2):258-261.
            76.  Uludağ H, Aliabadi HM, Gasiunas G. Editorial: Current
               approaches to CRISPR/Cas9 delivery.  Front Bioeng      doi: 10.1038/cr.2014.158
               Biotechnol. 2022;10:1103007.
                                                               88.  Bai S, Hu M, Yu L, et al. DNAJB7 is dispensable for male
               doi: 10.3389/fbioe.2022.1103007                    fertility in mice. Reprod Biol Endocrinol. 2023;21(1):32.
            77.  Onuma A, Fujii W, Sugiura K, Naito K. Efficient mutagenesis      doi: 10.1186/s12958-023-01086-6
               by  CRISPR/Cas  system  during  meiotic  maturation of   89.  Wolthuis RMF, van de Vrugt HJ, Cornel MC. CRISPR gene
               porcine oocytes. J Reprod Dev. 2017;63(1):45-50.
                                                                  therapy enters the clinic: the future starts now. Ned Tijdschr
               doi: 10.1262/jrd.2016-094                          Geneeskd. 2021;165:D5955.
            78.  Chen Y, Chen X, Zhang H, et al. TBC1D21 is an essential   90.  Drakopoulou E, Anagnou NP, Pappa KI.  Gene therapy
               factor for sperm mitochondrial sheath assembly and male   for malignant and benign gynaecological disorders: A
               fertility. Biol Reprod. 2022;107(2):619-634.       systematic review of an emerging success story.  Cancers
                                                                  (Basel). 2022;14(13):3238.
               doi: 10.1093/biolre/ioac069
                                                                  doi: 10.3390/cancers14133238
            79.  Dai J, Li Q, Zhou Q,  et al. IQCN disruption causes
               fertilization failure and male infertility due to manchette   91.  Atabiekov I, Hobeika E, Sheikh U, El Andaloussi A,
               assembly defect. EMBO Mol Med. 2022;14(12):e16501.  Al-Hendy A. The role of gene therapy in premature ovarian
                                                                  insufficiency management. Biomedicines. 2018;6(4):102.
               doi: 10.15252/emmm.202216501
                                                                  doi: 10.3390/biomedicines6040102
            80.  Wang HQ, Wang T, Gao F, Ren WZ. Application of CRISPR/
               Cas technology in spermatogenesis research and male   92.  Kretzmann JA, Evans CW, Moses C,  et  al. Tumour
               infertility treatment. Genes (Basel). 2022;13(6):1000.  suppression by targeted intravenous non-viral CRISPRa
                                                                  using dendritic polymers. Chem Sci. 2019;10(33):7718-7727.
               doi: 10.3390/genes13061000
                                                                  doi: 10.1039/c9sc01432b
            81.  Klymiuk N, Seeliger F, Bohlooly YM, Blutke A, Rudmann DG,
               Wolf E. Tailored pig models for preclinical efficacy   93.  Zhang W, Liu Y, Zhou X, Zhao R, Wang H. Applications of


            Volume 3 Issue 1 (2024)                         14                       https://doi.org/10.36922/gpd.2701
   17   18   19   20   21   22   23   24   25   26   27