Page 19 - GPD-3-1
P. 19

Gene & Protein in Disease                                                  Enhancing fertility with CRISPR



            Ethics approval and consent to participate            doi: 10.1016/j.canlet.2019.01.017

            Not applicable.                                    10.  Barrera-Paez JD, Moraes CT. Mitochondrial genome
                                                                  engineering coming-of-age. Trends Genet. 2022;38(8):869-880.
            Consent for publication                               doi: 10.1016/j.tig.2022.04.011

            Not applicable.                                    11.  Liang P, Xu Y, Zhang X,  et  al. CRISPR/Cas9-mediated
                                                                  gene editing in human tripronuclear zygotes. Protein Cell.
            Availability of data                                  2015;6(5):363-372.

            Not applicable.                                       doi: 10.1007/s13238-015-0153-5
            References                                         12.  Kingwell K. First CRISPR therapy seeks landmark approval.
                                                                  Nat Rev Drug Discov. 2023;22:339-341.
            1.   Soh YQS, Alföldi J, Pyntikova T,  et al. Sequencing the      doi: 10.1038/d41573-023-00050-8
               mouse Y chromosome reveals convergent gene acquisition
               and amplification on both sex chromosomes.  Cell.   13.  Wong C. UK first to approve CRISPR treatment for diseases:
               2014;159(4):800-813.                               What you need to know. Nature. 2023;623:676-677.
               doi: 10.1016/j.cell.2014.09.052                    doi: 10.1038/d41586-023-03590-6
            2.   Martin JJ, Woods DC, Tilly JL. Implications and current   14.  Mercuri ND, Cox BJ.  The need  for more research into
               limitations of oogenesis from female germline or oogonial   reproductive health and disease. Elife. 2022;11:e75061.
               stem cells in adult mammalian ovaries. Cells. 2019;8(2):93.     doi: 10.7554/eLife.75061
               doi: 10.3390/cells8020093                       15.  Dunleavy JEM, Dinh DT, Filby CE,  et al. Reproductive
            3.   Bulaklak K, Gersbach CA. The once and future gene therapy.   biology research down under: Highlights from the
               Nat Commun. 2020;11(1):5820.                       Australian and New Zealand annual meeting of the
                                                                  society for reproductive biology, 2021.  Reprod Fertil Dev.
               doi: 10.1038/s41467-020-19505-2                    2022;34(13):855-866.
            4.   Manghwar  H,  Lindsey  K,  Zhang  X, Jin  S.  CRISPR/Cas      doi: 10.1071/rd22115
               system: Recent advances and future prospects for genome
               editing. Trends Plant Sci. 2019;24(12):1102-1125.  16.  Zhou Q. Progress in modern reproductive biology research
                                                                  in China. Biol Reprod. 2022;107(1):3-11.
               doi: 10.1016/j.tplants.2019.09.006
                                                                  doi: 10.1093/biolre/ioac122
            5.   Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9
               system: A  new-fangled dawn in gene editing.  Life Sci.   17.  Shivram H, Cress BF, Knott GJ, Doudna JA. Controlling and
               2019;232:116636.                                   enhancing CRISPR systems. Nat Chem Biol. 2021;17(1):10-19.
               doi: 10.1016/j.lfs.2019.116636                     doi: 10.1038/s41589-020-00700-7
            6.   Ishino Y, Shinagawa H, Makino K, Amemura M,   18.  Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE.
               Nakata A. Nucleotide sequence of the iap gene, responsible   CRISPR in cancer biology and therapy.  Nat Rev Cancer.
               for alkaline phosphatase isozyme conversion in Escherichia   2022;22(5):259-279.
               coli, and identification of the gene product.  J  Bacteriol.      doi: 10.1038/s41568-022-00441-w
               1987;169(12):5429-5433.
                                                               19.  Gostimskaya I. CRISPR-Cas9: A  history of its discovery
               doi: 10.1128/jb.169.12.5429-5433.1987              and  ethical  considerations  of  its use in  genome  editing.
            7.   Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from   Biochemistry (Mosc). 2022;87(8):777-788.
               Encounter with a mysterious repeated sequence to genome      doi: 10.1134/s0006297922080090
               editing technology. J Bacteriol. 2018;200(7):e00580-17.
                                                               20.  Jinek  M, Chylinski  K, Fonfara I,  Hauer M,  Doudna JA,
               doi: 10.1128/JB.00580-17                           Charpentier E. A  programmable dual-RNA–guided DNA
            8.   Frangoul H, Altshuler D, Cappellini MD,  et al. CRISPR-  endonuclease in adaptive bacterial immunity.  Science.
               Cas9 Gene editing for sickle cell disease and β-thalassemia.   2012;337(6096):816-821.
               N Engl J Med. 2021;384(3):252-260.                 doi: 10.1126/science.1225829
               doi: 10.1056/NEJMoa2031054                      21.  Bhushan K, Chattopadhyay A, Pratap D. The evolution of
                                                                  CRISPR/Cas9 and their cousins: Hope or hype? Biotechnol
            9.   Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9
               for cancer therapy: Opportunities and challenges.  Cancer   Lett. 2018;40(3):465-477.
               Lett. 2019;447:48-55.                              doi: 10.1007/s10529-018-2506-7


            Volume 3 Issue 1 (2024)                         11                       https://doi.org/10.36922/gpd.2701
   14   15   16   17   18   19   20   21   22   23   24