Page 23 - GPD-3-1
P. 23

Gene & Protein in Disease                                                  Enhancing fertility with CRISPR



               CRISPR-Cas9 in gynecological cancer research. Clin Genet.   Idea? ; 2021. p. 111-120.
               2020;97(6):827-834.
                                                               105. Ayanoğlu FB, Elçin AE, Elçin YM. Bioethical issues in
               doi: 10.1111/cge.13717                             genome editing by CRISPR-Cas9 technology.  Turk J Biol.
                                                                  2020;44(2):110-120.
            94.  Cai J, Wu D, Jin Y, Bao S. Effect of CMB carrying PTX and
               CRISPR/Cas9 on endometrial cancer naked mouse model.      doi: 10.3906/biy-1912-52
               J Healthc Eng. 2022;2022:7119195.
                                                               106. Garland-Thomson R. How we got to CRISPR: The dilemma
               doi: 10.1155/2022/7119195                          of being human. Perspect Biol Med. 2020;63(1):28-43.
            95.  Wu R, Stolfi C, Zhai Y, Fearon ER, Cho KR. Abstract      doi: 10.1353/pbm.2020.0002
               AP16: MODELING endometrioid and high grade serous   107. Actis AM. Cuestiones éticas de la edición genética mediante
               carcinomas in the mouse using crispr/cas9-mediated   la tecnología CRISPR-Cas9. Revista de Bioética y Derecho.
               somatic gene editing in fallopian tube epithelium.  Clin   2021;53:203-214.
               Cancer Res. 2019;25:AP16.
                                                               108. Doxzen K, Halpern J. Focusing on human rights:
               doi: 10.1158/1557-3265.OVCASYMP18-AP16
                                                                  A framework for CRISPR germline genome editing ethics
            96.  Chen XZ, Guo R, Zhao C,  et  al. A  novel anti-cancer   and regulation. Perspect Biol Med. 2020;63(1):44-53.
               therapy: CRISPR/Cas9 gene editing.  Front Pharmacol.      doi: 10.1353/pbm.2020.0003
               2022;13:939090.
                                                               109. DiEuliis D, Giordano J. Gene editing using CRISPR/Cas9:
               doi: 10.3389/fphar.2022.939090
                                                                  Implications for dual-use and biosecurity.  Protein Cell.
            97.  Kang XJ, Caparas CIN, Soh BS, Fan Y. Addressing challenges   2018;9(3):239-240.
               in the clinical applications associated with CRISPR/Cas9
               technology and ethical questions to prevent its misuse.      doi: 10.1007/s13238-017-0493-4
               Protein Cell. 2017;8(11):791-795.               110. Barrangou R, Doudna JA. Applications of CRISPR
                                                                  technologies in research and beyond.  Nat  Biotechnol.
               doi: 10.1007/s13238-017-0477-4
                                                                  2016;34(9):933-941.
            98.  Liu W, Li L, Jiang J, Wu M, Lin P. Applications and challenges      doi: 10.1038/nbt.3659
               of CRISPR-Cas gene-editing to disease treatment in clinics.
               Precis Clin Med. 2021;4(3):179-191.             111. Hammond AM, Kyrou K, Gribble M, et al. Gene-drive
                                                                  suppression  of  mosquito  populations in  large  cages  as  a
               doi: 10.1093/pcmedi/pbab014
                                                                  bridge between lab and field. Nat Commun. 2021;12: 4589.
            99.  Rasul MF, Hussen BM, Salihi A, et al. Strategies to overcome
               the main challenges of the use of CRISPR/Cas9 as a      doi: 10.1038/s41467-021-24790-6.
               replacement for cancer therapy. Mol Cancer. 2022;21(1):64.  112. Godwin J, Serr M, Barnhill-Dilling SK, et al. Rodent gene
                                                                  drives for conservation: Opportunities and data needs. Proc
               doi: 10.1186/s12943-021-01487-4
                                                                  R Soc B. 2019;286(1914):20191606.
            100. Li W, Huang C, Chen J. The application of CRISPR/Cas
               mediated gene editing in synthetic biology: Challenges and      doi: 10.1098/rspb.2019.1606
               optimizations. Front Bioeng Biotechnol. 2022;10:890155.  113. Brown EA, Eikenbary SR, Landis WG. Bayesian network-
                                                                  based risk assessment of synthetic biology: Simulating
               doi: 10.3389/fbioe.2022.890155
                                                                  CRISPR-Cas9 gene drive dynamics in invasive rodent
            101. Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: Advances, limitations,   management. Risk Anal. 2022;42(12):2835-2846.
               and applications for precision cancer research. Front Med.      doi: 10.1111/risa.13948
               2021;8:649896.
                                                               114. Orr TJ, Hayssen V. The female snark is still a boojum:
               doi: 10.3389/fmed.2021.649896
                                                                  Looking toward the future of studying female reproductive
            102. Dohn  MN.    Preventing  an  Era  of”  New  Eugenics”:  An   biology. Integr Comp Biol. 2020;60(3):782-795.
               argument for federal funding and regulation of gene editing
               research in human embryos.  Richmond J Law Technol.      doi: 10.1093/icb/icaa091
               2018;25:1.                                      115. Otabe T, Nihongaki Y, Sato M. Optical control of genome
                                                                  editing by photoactivatable Cas9. In:  Mammalian Cell
            103. Hashmi F. Necessity or vanity: Designer babies, CRISPR,
               and the future of genetic modifications. Int J Sci Res Manag.   Engineering: Methods and Protocols. Berlin: Springer; 2021.
                                                                  p. 225-233.
               2019;7(11);B-2018-35-41.
                                                                  doi: 10.1007/978-1-0716-1441-9_13
            104. Ranisch R. When CRISPR Meets Fantasy: Transhumanism and
               the Military in the Age of Gene Editing. In: Transhumanism:   116. Farris MH, Texter PA, Mora AA,  et al. Detection of
               The Proper Guide to a Posthuman Condition or a Dangerous   CRISPR-mediated genome modifications through altered


            Volume 3 Issue 1 (2024)                         15                       https://doi.org/10.36922/gpd.2701
   18   19   20   21   22   23   24   25   26   27   28