Page 24 - GPD-3-1
P. 24

Gene & Protein in Disease                                                  Enhancing fertility with CRISPR



               methylation patterns of CpG islands.  BMC Genomics.   125. Chen S, Yao Y, Zhang Y, Fan G. CRISPR system: Discovery,
               2020;21(1):856.                                    development and off-target detection.  Cell Signal.
                                                                  2020;70:109577.
               doi: 10.1186/s12864-020-07233-2
                                                                  doi: 10.1016/j.cellsig.2020.109577
            117. Menchaca A, Dos Santos-Neto PC, Cuadro F, Souza-Neves M,
               Crispo M. From reproductive technologies to genome   126. Dong L, Guan X, Li N,  et al. An anti-CRISPR protein
               editing in small ruminants: An embryo’s journey.  Anim   disables type V Cas12a by acetylation. Nat Struct Mol Biol.
               Reprod. 2018;15(Suppl 1):984-995.                  2019;26(4):308-314.
               doi: 10.21451/1984-3143-ar2018-0022                doi: 10.1038/s41594-019-0206-1
            118. Jacobi AM, Rettig GR, Turk R, et al. Simplified CRISPR tools   127. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J.
               for efficient genome editing and streamlined protocols for   Anti-CRISPR protein applications: Natural brakes for
               their delivery into mammalian cells and mouse zygotes.   CRISPR-Cas technologies. Nat Methods. 2020;17(5):471-479.
               Methods. 2017;121-122:16-28.                       doi: 10.1038/s41592-020-0771-6
               doi: 10.1016/j.ymeth.2017.03.021                128. Shinmyo  Y,  Kawasaki  H.  CRISPR/Cas9-mediated  gene
            119. Yunaini L, Ari Pujianto D. Various gene modification   knockout in the mouse brain using in utero electroporation.
               techniques to discover molecular targets for nonhormonal   Curr Protoc Neurosci. 2017;79(1):3.32.1-3.32.11.
               male contraceptives: A  review.  Int J Reprod Biomed.      doi: 10.1002/cpns.26
               2023;21(1):17-32.
                                                               129. Abbasi S, Uchida S, Toh K, et al. Co-encapsulation of Cas9
               doi: 10.18502/ijrm.v21i1.12662                     mRNA and guide RNA in polyplex micelles enables genome
            120. Nayyab S, Gervasi MG, Tourzani DA, et al. TSSK3, a novel   editing in mouse brain. J Controll Release. 2021;332:260-268.
               target for male contraception, is required for spermiogenesis.      doi: 10.1016/j.jconrel.2021.02.026
               Mol Reprod Dev. 2021;88(11):718-730.
                                                               130. Chen K, Han H, Zhao S, et al. Lung and liver editing by
               doi: 10.1002/mrd.23539                             lipid nanoparticle delivery of a stable CRISPR-Cas9 RNP.
            121. Safari  F,  Farajnia  S, Ghasemi  Y,  Zarghami  N. New   bioRxiv. 2023.
               developments in CRISPR technology: Improvements      doi: 10.1101/2023.11.15.566339
               in specificity and efficiency.  Curr Pharm Biotechnol.
               2017;18(13):1038-1054.                          131. Shen J, Lu Z, Wang J,  et al. Traceable nano-biohybrid
                                                                  complexes by one-step synthesis as CRISPR-chem vectors
               doi: 10.2174/1389201019666180209120533             for neurodegenerative diseases synergistic treatment.  Adv
            122. Matson AW, Hosny N, Swanson ZA, Hering BJ, Burlak C.   Mater. 2021;33(27):2101993.
               Optimizing sgRNA length to improve target specificity and      doi: 10.1002/adma.202101993
               efficiency for the GGTA1 gene using the CRISPR/Cas9 gene
               editing system. PLoS One. 2019;14(12):e0226107.  132. Lee K, Conboy M, Park HM,  et al. Nanoparticle delivery
                                                                  of Cas9 ribonucleoprotein and donor DNA  in vivo
               doi: 10.1371/journal.pone.0226107                  induces homology-directed DNA repair. Nat Biomed Eng.
            123. Schmidt MJ, Gupta A, Bednarski C,  et al. Improved   2017;1(11):889-901.
               CRISPR genome editing using small highly active and      doi: 10.1038/s41551-017-0137-2
               specific engineered RNA-guided nucleases.  Nat Commun.
               2021;12(1):4219.                                133. Lee B, Lee K, Panda S, et al. Nanoparticle delivery of CRISPR
                                                                  into the brain rescues a mouse model of fragile X syndrome
               doi: 10.1038/s41467-021-24454-5                    from exaggerated repetitive behaviours.  Nat Biomed Eng.
                                                                  2018;2(7):497-507.
            124. Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic
               nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins   134. Comizzoli P, Holt WV. Breakthroughs and new horizons in
               for effective tissue specific genome editing. Nat Commun.   reproductive biology of rare and endangered animal species.
               2020;11(1):3232.                                   Biol Reprod. 2019;101(3):514-525.
               doi: 10.1038/s41467-020-17029-3                    doi: 10.1093/biolre/ioz031












            Volume 3 Issue 1 (2024)                         16                       https://doi.org/10.36922/gpd.2701
   19   20   21   22   23   24   25   26   27   28   29