Page 24 - GPD-3-1
P. 24
Gene & Protein in Disease Enhancing fertility with CRISPR
methylation patterns of CpG islands. BMC Genomics. 125. Chen S, Yao Y, Zhang Y, Fan G. CRISPR system: Discovery,
2020;21(1):856. development and off-target detection. Cell Signal.
2020;70:109577.
doi: 10.1186/s12864-020-07233-2
doi: 10.1016/j.cellsig.2020.109577
117. Menchaca A, Dos Santos-Neto PC, Cuadro F, Souza-Neves M,
Crispo M. From reproductive technologies to genome 126. Dong L, Guan X, Li N, et al. An anti-CRISPR protein
editing in small ruminants: An embryo’s journey. Anim disables type V Cas12a by acetylation. Nat Struct Mol Biol.
Reprod. 2018;15(Suppl 1):984-995. 2019;26(4):308-314.
doi: 10.21451/1984-3143-ar2018-0022 doi: 10.1038/s41594-019-0206-1
118. Jacobi AM, Rettig GR, Turk R, et al. Simplified CRISPR tools 127. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J.
for efficient genome editing and streamlined protocols for Anti-CRISPR protein applications: Natural brakes for
their delivery into mammalian cells and mouse zygotes. CRISPR-Cas technologies. Nat Methods. 2020;17(5):471-479.
Methods. 2017;121-122:16-28. doi: 10.1038/s41592-020-0771-6
doi: 10.1016/j.ymeth.2017.03.021 128. Shinmyo Y, Kawasaki H. CRISPR/Cas9-mediated gene
119. Yunaini L, Ari Pujianto D. Various gene modification knockout in the mouse brain using in utero electroporation.
techniques to discover molecular targets for nonhormonal Curr Protoc Neurosci. 2017;79(1):3.32.1-3.32.11.
male contraceptives: A review. Int J Reprod Biomed. doi: 10.1002/cpns.26
2023;21(1):17-32.
129. Abbasi S, Uchida S, Toh K, et al. Co-encapsulation of Cas9
doi: 10.18502/ijrm.v21i1.12662 mRNA and guide RNA in polyplex micelles enables genome
120. Nayyab S, Gervasi MG, Tourzani DA, et al. TSSK3, a novel editing in mouse brain. J Controll Release. 2021;332:260-268.
target for male contraception, is required for spermiogenesis. doi: 10.1016/j.jconrel.2021.02.026
Mol Reprod Dev. 2021;88(11):718-730.
130. Chen K, Han H, Zhao S, et al. Lung and liver editing by
doi: 10.1002/mrd.23539 lipid nanoparticle delivery of a stable CRISPR-Cas9 RNP.
121. Safari F, Farajnia S, Ghasemi Y, Zarghami N. New bioRxiv. 2023.
developments in CRISPR technology: Improvements doi: 10.1101/2023.11.15.566339
in specificity and efficiency. Curr Pharm Biotechnol.
2017;18(13):1038-1054. 131. Shen J, Lu Z, Wang J, et al. Traceable nano-biohybrid
complexes by one-step synthesis as CRISPR-chem vectors
doi: 10.2174/1389201019666180209120533 for neurodegenerative diseases synergistic treatment. Adv
122. Matson AW, Hosny N, Swanson ZA, Hering BJ, Burlak C. Mater. 2021;33(27):2101993.
Optimizing sgRNA length to improve target specificity and doi: 10.1002/adma.202101993
efficiency for the GGTA1 gene using the CRISPR/Cas9 gene
editing system. PLoS One. 2019;14(12):e0226107. 132. Lee K, Conboy M, Park HM, et al. Nanoparticle delivery
of Cas9 ribonucleoprotein and donor DNA in vivo
doi: 10.1371/journal.pone.0226107 induces homology-directed DNA repair. Nat Biomed Eng.
123. Schmidt MJ, Gupta A, Bednarski C, et al. Improved 2017;1(11):889-901.
CRISPR genome editing using small highly active and doi: 10.1038/s41551-017-0137-2
specific engineered RNA-guided nucleases. Nat Commun.
2021;12(1):4219. 133. Lee B, Lee K, Panda S, et al. Nanoparticle delivery of CRISPR
into the brain rescues a mouse model of fragile X syndrome
doi: 10.1038/s41467-021-24454-5 from exaggerated repetitive behaviours. Nat Biomed Eng.
2018;2(7):497-507.
124. Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic
nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins 134. Comizzoli P, Holt WV. Breakthroughs and new horizons in
for effective tissue specific genome editing. Nat Commun. reproductive biology of rare and endangered animal species.
2020;11(1):3232. Biol Reprod. 2019;101(3):514-525.
doi: 10.1038/s41467-020-17029-3 doi: 10.1093/biolre/ioz031
Volume 3 Issue 1 (2024) 16 https://doi.org/10.36922/gpd.2701

