Page 20 - GPD-3-1
P. 20
Gene & Protein in Disease Enhancing fertility with CRISPR
22. Albertini DF. Reflections in reproductive medicine 2020: 34. Koonin EV, Makarova KS, Zhang F. Diversity, classification
Windows of opportunity lost and found. J Assist Reprod and evolution of CRISPR-Cas systems. Curr Opin Microbiol.
Genet. 2020;37(12):2893-2895. 2017;37:67-78.
doi: 10.1007/s10815-020-02021-z doi: 10.1016/j.mib.2017.05.008
23. Albert H. The Evolution of CRISPR Technology from Editing 35. Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary
to Diagnostics. New York: Inside Precision Medicine; 2022. classification of CRISPR–Cas systems: A burst of class 2 and
derived variants. Nat Rev Microbiol. 2020;18(2):67-83.
24. Alok A, Sandhya D, Jogam P, et al. The rise of the CRISPR/
Cpf1 system for efficient genome editing in plants. Front doi: 10.1038/s41579-019-0299-x
Plant Sci. 2020;11:264. 36. Abbasi F, Miyata H, Ikawa M. Revolutionizing male fertility
doi: 10.3389/fpls.2020.00264 factor research in mice by using the genome editing tool
CRISPR/Cas9. Reprod Med Biol. 2018;17(1):3-10.
25. Nihongaki Y, Otabe T, Ueda Y, Sato M. A split CRISPR–Cpf1
platform for inducible genome editing and gene activation. doi: 10.1002/rmb2.12067
Nat Chem Biol. 2019;15(9):882-888. 37. Hidalgo-Cantabrana C, Goh YJ, Barrangou R.
doi: 10.1038/s41589-019-0338-y Characterization and repurposing of type I and type II
CRISPR–cas systems in bacteria. J Mol Biol. 2019;431(1):21-33.
26. Pickar-Oliver A, Gersbach CA. The next generation of
CRISPR–Cas technologies and applications. Nat Rev Mol doi: 10.1016/j.jmb.2018.09.013
Cell Biol. 2019;20(8):490-507. 38. Wang G, Li J. Review, analysis, and optimization of the
doi: 10.1038/s41580-019-0131-5 CRISPR Streptococcus pyogenes Cas9 system. Med Drug
Discov. 2021;9:100080.
27. Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F,
Collins JJ. CRISPR-based diagnostics. Nat Biomed Eng. doi: 10.1016/j.medidd.2021.100080
2021;5(7):643-656. 39. Khanzadi MN, Khan AA. CRISPR/Cas9: Nature’s gift to
doi: 10.1038/s41551-021-00760-7 prokaryotes and an auspicious tool in genome editing.
J Basic Microbiol. 2020;60(2):91-102.
28. Scheufele DA, Krause NM, Freiling I, Brossard D. What we
know about effective public engagement on CRISPR and doi: 10.1002/jobm.201900420
beyond. Proc Natl Acad Sci. 2021;118(22):e2004835117. 40. Hillary VE, Ceasar SA. A review on the mechanism
doi: 10.1073/pnas.2004835117 and applications of CRISPR/Cas9/Cas12/Cas13/Cas14
proteins utilized for genome engineering. Mol Biotechnol.
29. Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and 2023;65(3):311-325.
gene editing technologies. Mol Cell. 2022;82(2):333-347.
doi: 10.1007/s12033-022-00567-0
doi: 10.1016/j.molcel.2021.12.002
41. Salanga CM, Salanga MC. Genotype to phenotype: CRISPR
30. Xie J, Ge W, Li N, et al. Efficient base editing for multiple gene editing reveals genetic compensation as a mechanism
genes and loci in pigs using base editors. Nat Commun. for phenotypic disjunction of morphants and mutants. Int J
2019;10(1):2852. Mol Sci. 2021;22(7):3472.
doi: 10.1038/s41467-019-10421-8 doi: 10.3390/ijms22073472
31. Wang Y, Cheng H, Liu Y, et al. In-situ generation of 42. Tahir T, Ali Q, Rashid MH, Malik A. The journey of
large numbers of genetic combinations for metabolic CRISPR-CAS9 from bacterial defense mechanism to a gene
reprogramming via CRISPR-guided base editing. Nat editing tool in both animals and plants. Biol Clin Sci Res J.
Commun. 2021;12(1):678. 2020;2020:e017.
doi: 10.1038/s41467-021-21003-y 43. Xue C, Greene EC. DNA repair pathway choices in
32. Li Q, Li Y, Yang S, et al. CRISPR–Cas9-mediated base- CRISPR-Cas9-mediated genome editing. Trends Genet.
editing screening in mice identifies DND1 amino acids that 2021;37(7):639-656.
are critical for primordial germ cell development. Nat Cell doi: 10.1016/j.tig.2021.02.008
Biol. 2018;20(11):1315-1325.
44. Zhang H, Qin C, An C, et al. Application of the CRISPR/
doi: 10.1038/s41556-018-0202-4 Cas9-based gene editing technique in basic research,
33. Rosello M, Serafini M, Concordet JP, Del Bene F. Precise diagnosis, and therapy of cancer. Mol Cancer. 2021;20(1):126.
mutagenesis in zebrafish using cytosine base editors. Nat doi: 10.1186/s12943-021-01431-6
Protoc. 2023;18(9):2794-2813.
45. Ding X, Yu L, Chen L, et al. Recent progress and future
doi: 10.1038/s41596-023-00854-3 prospect of CRISPR/Cas-derived transcription activation
Volume 3 Issue 1 (2024) 12 https://doi.org/10.36922/gpd.2701

