Page 20 - GPD-3-1
P. 20

Gene & Protein in Disease                                                  Enhancing fertility with CRISPR



            22.  Albertini DF. Reflections in reproductive medicine 2020:   34.  Koonin EV, Makarova KS, Zhang F. Diversity, classification
               Windows of opportunity lost and found.  J  Assist Reprod   and evolution of CRISPR-Cas systems. Curr Opin Microbiol.
               Genet. 2020;37(12):2893-2895.                      2017;37:67-78.
               doi: 10.1007/s10815-020-02021-z                    doi: 10.1016/j.mib.2017.05.008
            23.  Albert H. The Evolution of CRISPR Technology from Editing   35.  Makarova KS, Wolf YI, Iranzo J,  et al. Evolutionary
               to Diagnostics. New York: Inside Precision Medicine; 2022.  classification of CRISPR–Cas systems: A burst of class 2 and
                                                                  derived variants. Nat Rev Microbiol. 2020;18(2):67-83.
            24.  Alok A, Sandhya D, Jogam P, et al. The rise of the CRISPR/
               Cpf1 system for efficient genome editing in plants.  Front      doi: 10.1038/s41579-019-0299-x
               Plant Sci. 2020;11:264.                         36.  Abbasi F, Miyata H, Ikawa M. Revolutionizing male fertility
               doi: 10.3389/fpls.2020.00264                       factor research in mice by using the genome editing tool
                                                                  CRISPR/Cas9. Reprod Med Biol. 2018;17(1):3-10.
            25.  Nihongaki Y, Otabe T, Ueda Y, Sato M. A split CRISPR–Cpf1
               platform for inducible genome editing and gene activation.      doi: 10.1002/rmb2.12067
               Nat Chem Biol. 2019;15(9):882-888.              37.  Hidalgo-Cantabrana  C,  Goh  YJ,  Barrangou  R.
               doi: 10.1038/s41589-019-0338-y                     Characterization and repurposing of type  I and type  II
                                                                  CRISPR–cas systems in bacteria. J Mol Biol. 2019;431(1):21-33.
            26.  Pickar-Oliver  A, Gersbach CA. The next  generation of
               CRISPR–Cas technologies and applications.  Nat Rev Mol      doi: 10.1016/j.jmb.2018.09.013
               Cell Biol. 2019;20(8):490-507.                  38.  Wang G, Li J. Review, analysis, and optimization of the
               doi: 10.1038/s41580-019-0131-5                     CRISPR  Streptococcus  pyogenes Cas9 system.  Med  Drug
                                                                  Discov. 2021;9:100080.
            27.  Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F,
               Collins  JJ. CRISPR-based  diagnostics.  Nat  Biomed Eng.      doi: 10.1016/j.medidd.2021.100080
               2021;5(7):643-656.                              39.  Khanzadi MN, Khan AA. CRISPR/Cas9: Nature’s gift  to
               doi: 10.1038/s41551-021-00760-7                    prokaryotes and an auspicious tool in genome editing.
                                                                  J Basic Microbiol. 2020;60(2):91-102.
            28.  Scheufele DA, Krause NM, Freiling I, Brossard D. What we
               know about effective public engagement on CRISPR and      doi: 10.1002/jobm.201900420
               beyond. Proc Natl Acad Sci. 2021;118(22):e2004835117.  40.  Hillary VE, Ceasar SA. A  review on the mechanism
               doi: 10.1073/pnas.2004835117                       and applications of CRISPR/Cas9/Cas12/Cas13/Cas14
                                                                  proteins utilized for genome engineering.  Mol Biotechnol.
            29.  Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and   2023;65(3):311-325.
               gene editing technologies. Mol Cell. 2022;82(2):333-347.
                                                                  doi: 10.1007/s12033-022-00567-0
               doi: 10.1016/j.molcel.2021.12.002
                                                               41.  Salanga CM, Salanga MC. Genotype to phenotype: CRISPR
            30.  Xie J, Ge W, Li N, et al. Efficient base editing for multiple   gene editing reveals genetic compensation as a mechanism
               genes and loci in pigs using base editors.  Nat Commun.   for phenotypic disjunction of morphants and mutants. Int J
               2019;10(1):2852.                                   Mol Sci. 2021;22(7):3472.
               doi: 10.1038/s41467-019-10421-8                    doi: 10.3390/ijms22073472
            31.  Wang Y, Cheng H, Liu Y,  et al.  In-situ generation of   42.  Tahir T, Ali Q, Rashid MH, Malik A. The journey of
               large numbers of genetic combinations for metabolic   CRISPR-CAS9 from bacterial defense mechanism to a gene
               reprogramming via CRISPR-guided base editing.  Nat   editing tool in both animals and plants. Biol Clin Sci Res J.
               Commun. 2021;12(1):678.                            2020;2020:e017.
               doi: 10.1038/s41467-021-21003-y                 43.  Xue C, Greene EC. DNA repair pathway choices in
            32.  Li Q, Li Y, Yang S,  et al. CRISPR–Cas9-mediated base-  CRISPR-Cas9-mediated genome editing.  Trends Genet.
               editing screening in mice identifies DND1 amino acids that   2021;37(7):639-656.
               are critical for primordial germ cell development. Nat Cell      doi: 10.1016/j.tig.2021.02.008
               Biol. 2018;20(11):1315-1325.
                                                               44.  Zhang H, Qin C, An C, et al. Application of the CRISPR/
               doi: 10.1038/s41556-018-0202-4                     Cas9-based gene editing technique in basic research,
            33.  Rosello  M,  Serafini  M,  Concordet  JP,  Del  Bene  F.  Precise   diagnosis, and therapy of cancer. Mol Cancer. 2021;20(1):126.
               mutagenesis in zebrafish using cytosine base editors.  Nat      doi: 10.1186/s12943-021-01431-6
               Protoc. 2023;18(9):2794-2813.
                                                               45.  Ding X, Yu L, Chen L,  et al. Recent progress and future
               doi: 10.1038/s41596-023-00854-3                    prospect of CRISPR/Cas-derived transcription activation


            Volume 3 Issue 1 (2024)                         12                       https://doi.org/10.36922/gpd.2701
   15   16   17   18   19   20   21   22   23   24   25