Page 27 - GPD-4-1
P. 27
Gene & Protein in Disease Gene fusions and chimeric RNAs
doi: 10.1016/j.ecl.2018.10.002 doi: 10.1016/j.canlet.2020.11.036
69. Jurkiewicz M, Cimic A, Murty VV, et al. Detection of 79. Mamouni K, Zhang S, Li X, et al. A novel flavonoid
STRN‐ALK fusion in thyroid nodules with indeterminate composition targets androgen receptor signaling and
cytopathology facilitates papillary thyroid cancer diagnosis. inhibits prostate cancer growth in preclinical models.
Diagn Cytopathol. 2021;49:E146-E151. Neoplasia. 2018;20(8):789-799.
doi: 10.1002/dc.24647 doi: 10.1016/j.neo.2018.06.003
70. Kelly LM, Barila G, Liu P, et al. Identification of the 80. Sala L, Mancin M, Pastore A, Seminati D, Cortinovis D, Bidoli
transforming STRN-ALK fusion as a potential therapeutic P, Alberti A. Aplastic anemia in a patient with advanced lung
target in the aggressive forms of thyroid cancer. Proc Natl adenocarcinoma during first line osimertinib: A case report
Acad Sci U S A. 2014;111:4233-4238. and literature review. Lung Cancer. 2020;142:120-122.
doi: 10.1073/pnas.1321937111 doi: 10.1016/j.lungcan.2020.02.019
71. Agrawal N, Akbani R, Arman Aksoy B, et al. Integrated 81. Ford DJ, Dingwall AK. Corrigendum to “The cancer
genomic characterization of papillary thyroid carcinoma. COMPASS: Navigating the functions of MLL complexes in
Cell. 2014;159:676-690. cancer” [Cancer Genetics 208 (2015) pp. 178-191]. Cancer
Genet. 2019;233:102.
doi: 10.1016/j.cell.2014.09.050
doi: 10.1016/j.cancergen.2019.03.003
72. Staubitz JI, Musholt TJ, Schad A, et al. ANKRD26-RET-a
novel gene fusion involving RET in papillary thyroid 82. Moon JY, Zolnik CP, Wang Z, et al. Gut microbiota and
carcinoma. Cancer Genet. 2019;238:10-17. plasma metabolites associated with diabetes in women
with, or at high risk for, HIV infection. EBioMedicine.
doi: 10.1016/j.cancergen.2019.07.002 2018;37:392-400.
73. Krishnan A, Berthelet J, Renaud E, et al. Proteogenomics doi: 10.1016/j.ebiom.2018.10.037
analysis unveils a TFG-RET gene fusion and druggable
targets in papillary thyroid carcinomas. Nat Commun. 83. Singh S, Qin F, Kumar S, et al. The landscape of chimeric
2020;11:2056. RNAs in non-diseased tissues and cells. Nucleic Acids Res.
2020;48(4):1764-1778.
doi: 10.1038/s41467-020-15955-w
doi: 10.1093/nar/gkz1223
74. Tao Y, Gross N, Fan X, et al. Identification of novel enriched
recurrent chimeric COL7A1-UCN2 in human laryngeal 84. Elfman J, Pham LP, Li H. The relationship between
cancer samples using deep sequencing. BMC Cancer. chimeric RNAs and gene fusions; potential implications of
2018;18:248. reciprocity in cancer. J Genet Genomics, Yi Chuan Xue Bao.
2020;47(7):341.
doi: 10.1186/s12885-018-4161-8
doi: 10.1016/j.jgg.2020.04.005
75. Wang J, Xie GF, He Y, et al. Interfering expression of chimeric 85. Sun Y, Li H. Chimeric RNAs discovered by RNA sequencing
transcript SEPT7P2-PSPH promotes cell proliferation and their roles in cancer and rare genetic diseases. Genes
in patients with nasopharyngeal carcinoma. J Oncol. (Basel). 2022;13(5):741.
2019;2019:1654724.
doi: 10.3390/genes13050741
doi: 10.1155/2019/1654724
86. Wu P, Yang S, Singh S, et al. The landscape and implications
76. Riegler J, Gill H, Ogasawara A, et al. VCAM-1 density and of chimeric RNAs in cervical cancer. EBioMedicine.
tumor perfusion predict T-cell infiltration and treatment 2018;37:158-167.
response in preclinical models. Neoplasia. 2019;21(10):1036-
1050. doi: 10.1016/j.ebiom.2018.10.059
doi: 10.1016/j.neo.2019.08.003 87. Tang Y, Guan F, Li H. Case study: The recurrent fusion RNA
DUS4L-BCAP29 in noncancer human tissues and cells.
77. Ali RM, McIntosh SA, Savage KI. Homologous Methods Mol Biol. 2020;2079:243-258.
recombination deficiency in breast cancer: Implications for
risk, cancer development, and therapy. Genes Chromosomes doi: 10.1007/978-1-4939-9904-0_19
Cancer. 2021;60(5):358-372. 88. Babiceanu M, Qin F, Xie Z, Jia Y, et al. Recurrent chimeric
doi: 10.1002/gcc.22921 fusion RNAs in non-cancer tissues and cells. Nucleic Acids
Res. 2016;44:2859-2872.
78. Hartman ML, Gajos-Michniewicz A, Talaj JA, et al. BH3
mimetics potentiate pro-apoptotic activity of encorafenib doi: 10.1093/nar/gkw032
in BRAFV600E melanoma cells. Cancer Lett. 2021;499:122- 89. Chen C, Haddox S, Tang Y, Qin F, Li H. Landscape of
136. chimeric RNAs in non-cancerous cells. Genes (Basel).
Volume 4 Issue 1 (2025) 16 doi: 10.36922/gpd.3641

