Page 25 - GPD-4-1
P. 25

Gene & Protein in Disease                                                 Gene fusions and chimeric RNAs



            24.  Egashira S, Jinnin M, Ajino M, et al. Chronic sun exposure-  35.  Hernández-Torres F, Rastrojo A, Aguado B. Intron retention
               related fusion oncogenes EGFR-PPARGC1A in cutaneous   and transcript chimerism conserved across mammals:
               squamous cell carcinoma. Sci Rep. 2017;7:12654.    Ly6g5b and Csnk2b-Ly6g5b as examples. BMC Genomics.
                                                                  2013;14:1-12.
               doi: 10.1038/s41598-017-12836-z
                                                                  doi: 10.1186/1471-2164-14-199
            25.  Holly JM, Broadhurst J, Mansor R, Bahl A, Perks CM.
               Hyperglycemia  promotes  TMPRSS2-ERG  gene  fusion  in   36.  Akiva P, Toporik A, Edelheit S, et al. Transcription-mediated
               prostate  cancer cells via upregulating insulin-like  growth   gene fusion in the human genome. Genome Res. 2006;16:30-
               factor-binding protein-2.  Front  Endocrinol  (Lausanne).   36.
               2017;8:305.                                        doi: 10.1101/gr.4137606
               doi: 10.3389/fendo.2017.00305                   37.  Qin F, Song Z, Babiceanu M,  et al. Discovery of CTCF-
            26.  Eguchi-Ishimae M, Eguchi M, Ishii E, et al. Breakage and   sensitive Cis-spliced fusion RNAs between adjacent genes in
               fusion of the TEL (ETV6) gene in immature B lymphocytes   human prostate cells. PLoS Genet. 2015;11:e1005001.
               induced by apoptogenic signals. Blood. 2001;97:737-743.     doi: 10.1371/journal.pgen.1005001
               doi: 10.1182/blood.v97.3.737                    38.  Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM.
            27.  Mani RS, Tomlins SA, Callahan K,  et al. Induced   SLC45A3-ELK4 chimera in prostate cancer: Spotlight on
               chromosomal proximity and gene fusions in prostate cancer.   cis-splicing. Cancer Discov. 2012;2:582-585.
               Science. 2009;326:1230-1230.                       doi: 10.1158/2159-8290.CD-12-0212
               doi: 10.1126/science.1178124                    39.  Rickman DS, Pflueger D, Moss B,  et al. SLC45A3-ELK4
            28.  Jividen K, Li H. Chimeric RNAs generated by intergenic   is a novel and frequent erythroblast transformation-
               splicing in normal and cancer cells.  Genes Chromosomes   specific  fusion transcript in prostate  cancer.  Cancer Res.
               Cancer. 2014;53:963-971.                           2009;69:2734-2738.
               doi: 10.1002/gcc.22207                             doi: 10.1158/0008-5472.CAN-08-4926
            29.  Wang K, Ubriaco G, Sutherland LC. RBM6-RBM5   40.  Wu CS, Yu CY, Chuang CY, et al. Integrative transcriptome
               transcription-induced chimeras are differentially expressed   sequencing identifies trans-splicing events with important
               in tumours. BMC Genomics. 2007;8:348.              roles in human embryonic stem cell pluripotency. Genome
                                                                  Res. 2014;24:25-36.
            30.  Parra G, Reymond A, Dabbouseh N,  et al. Tandem
               chimerism as a means to increase protein complexity in the      doi: 10.1101/gr.159483.113
               human genome. Genome Res. 2006;16:37-44.        41.  Murphy L, Dotzlaw H, Hamerton J, Schwarz J. Investigation
               doi: 10.1101/gr.4145906                            of the origin of variant, truncated estrogen receptor-like
                                                                  mRNAs identified in some human breast cancer biopsy
            31.  Denoeud F, Kapranov P, Ucla C,  et al.  Prominent use of   samples. Breast Cancer Res Treat. 1993;26:149-161.
               distal 5′ transcription start sites and discovery of a large
               number of additional exons in ENCODE regions. Genome      doi: 10.1007/BF00689688
               Res. 2007;17:746-759.                           42.  Pink J, Fritsch M, Bilimoria M, Assikis V, Jordan V. Cloning
               doi: 10.1101/gr.5660607                            and characterization of a 77-kDa oestrogen receptor
                                                                  isolated from a human breast cancer cell line. Br J Cancer.
            32.  Siepel A, Diekhans M, Brejová B, et al. Targeted discovery of   1997;75:17-27.
               novel human exons by comparative genomics. Genome Res.
               2007;17:1763-1773.                                 doi: 10.1038/bjc.1997.4
               doi: 10.1101/gr.7128207                         43.  Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion
                                                                  mimics  trans-splicing  of  RNAs  in  normal  human  cells.
            33.  Kannan K, Wang L, Wang J, Ittmann MM, Li W, Yen L.   Science. 2008;321:1357-1361.
               Recurrent chimeric RNAs enriched in human prostate
               cancer identified by deep sequencing. Proc Natl Acad Sci U S      doi: 10.1126/science.1156725
               A. 2011;108:9172-9177.                          44.  Yuan H, Qin F, Movassagh H,  et al. A chimeric RNA
               doi: 10.1073/pnas.1100489108                       characteristic of rhabdomyosarcoma in normal myogenesis
                                                                  process. Cancer Discov. 2013;3:1394-1403.
            34.  Nacu S, Yuan W, Kan Z,  et al. Deep RNA sequencing
               analysis of readthrough gene fusions in human prostate      doi: 10.1158/2159-8290.CD-13-0186
               adenocarcinoma and reference samples.  BMC  Med   45.  Sutton RE, Boothroyd JC. Evidence for trans splicing in
               Genomics. 2011;4:1-22.                             trypanosomes. Cell. 1986;47:527-535.
               doi: 10.1186/1755-8794-4-11                        doi: 10.1016/0092-8674(86)90617-3


            Volume 4 Issue 1 (2025)                         14                              doi: 10.36922/gpd.3641
   20   21   22   23   24   25   26   27   28   29   30