Page 39 - GTM-2-1
P. 39

Global Translational Medicine                                               Stem cells in aortic aneurysm



            20.  Qin Y, Cao X, Guo J, et al., 2012, Deficiency of cathepsin   31.  Meher AK, Spinosa M, Davis JP, et al., 2018, Novel role of IL
               S  attenuates  angiotensin  II-induced  abdominal  aortic   (Interleukin)-1/10. neutrophil extracellular trap formation
               aneurysm  formation  in  apolipoprotein  E-deficient  mice.   and abdominal aortic aneurysms. Arterioscler Thromb Vasc
               Cardiovasc Res, 96: 401–410.                       Biol, 38: 843–853.
               https://doi.org/10.1093/cvr/cvs263                 https://doi.org/10.1161/atvbaha.117.309897
            21.  Jana S, Hu M, Shen M,  et  al., 2019, Extracellular matrix,   32.  Pedroza  AJ, Tashima  Y, Shad  R,  et al., 2020,  Single-cell
               regional heterogeneity of the aorta, and aortic aneurysm.   transcriptomic profiling of vascular smooth muscle
               Exp Mol Med, 51: 1–15.                             cell phenotype modulation in Marfan syndrome aortic
                                                                  aneurysm. Arterioscler Thromb Vasc Biol, 40: 2195–2211.
               https://doi.org/10.1038/s12276-019-0286-3
                                                                  https://doi.org/10.1161/atvbaha.120.314670
            22.  Sun J, Sukhova GK, Zhang J,  et al., 2012, Cathepsin K
               deficiency reduces elastase perfusion-induced abdominal   33.  Wu D, Ren P, Zheng Y,  et al., 2017, NLRP3 (Nucleotide
               aortic aneurysms in mice. Arterioscler Thromb Vasc Biol, 32:   oligomerization domain-like receptor family, Pyrin domain
               15–23.                                             containing 3)-caspase-1 inflammasome degrades contractile
                                                                  proteins: Implications for aortic biomechanical dysfunction
               https://doi.org/10.1161/atvbaha.111.235002
                                                                  and  aneurysm  and  dissection  formation.  Arterioscler
            23.  Sun J, Sukhova GK, Zhang J,  et al., 2011, Cathepsin L   Thromb Vasc Biol, 37: 694–706.
               activity is essential to elastase perfusion-induced abdominal
               aortic  aneurysms  in mice.  Arterioscler Thromb Vasc Biol,      https://doi.org/10.1161/atvbaha.116.307648
               31: 2500-2508.                                  34.  Portelli SS, Hambly BD, Jeremy RW, et al., 2021, Oxidative
                                                                  stress in genetically triggered thoracic aortic aneurysm: Role
               https://doi.org/10.1161/atvbaha.111.230201
                                                                  in pathogenesis and therapeutic opportunities. Redox Rep,
            24.  S24]-250Infantes D, Nus M, Navas-Madroñal M, et al., 2021,   26: 45–52.
               Oxidative  stress  and inflammatory  markers  in abdominal      https://doi.org/10.1080/13510002.2021.1899473
               aortic aneurysm. Antioxidants (Basel), 10: 602.
                                                               35.  Irace FG, Cammisotto V, Valenti V,  et al., 2021, Role of
               https://doi.org/10.3390/antiox10040602
                                                                  oxidative stress and autophagy in thoracic aortic aneurysms.
            25.  Emeto TI, Moxon JV, Au M, et al., 2016, Oxidative stress   JACC Basic Transl Sci, 6: 719–730.
               and abdominal aortic aneurysm: Potential treatment targets.      https://doi.org/10.1016/j.jacbts.2021.08.002
               Clin Sci (Lond), 130: 301–315.
                                                               36.  Isselbacher EM, Lino Cardenas CL, Lindsay ME, 2016,
               https://doi.org/10.1042/cs20150547
                                                                  Hereditary influence in thoracic aortic aneurysm and
            26.  Li Z, Kong W, 2020, Cellular signaling in abdominal aortic   dissection. Circulation, 133: 2516–2528.
               aneurysm. Cell Signal, 70: 109575.
                                                                  https://doi.org/10.1161/circulationaha.116.009762
               https://doi.org/10.1016/j.cellsig.2020.109575
                                                               37.  Milewicz DM, Trybus KM, Guo DC, et al., 2017, Hereditary
            27.  Wiernicki I, Parafiniuk M, Kolasa-Wołosiuk A, et al., 2019,   influence in thoracic aortic aneurysm and dissection.
               Relationship between aortic wall oxidative stress/proteolytic   Circulation, 133: 2516–2528.
               enzyme expression and intraluminal thrombus thickness      https://doi.org/10.1161/circulationaha.116.009762
               indicates a novel pathomechanism  in the progression of
               human abdominal aortic aneurysm. FASEB J, 33: 885–895.  38.  Yang H,  Zhou T,  Stranz A,  et al., 2021,  Single-Cell  RNA
                                                                  sequencing reveals heterogeneity of vascular cells in early
               https://doi.org/10.1096/fj.201800633R
                                                                  stage murine abdominal aortic aneurysm-brief report.
            28.  Lu H, Daugherty A, 2017, Aortic aneurysms.  Arterioscler   Arterioscler Thromb Vasc Biol, 41: 1158–1166.
               Thromb Vasc Biol, 37: e59–e65.
                                                                  https://doi.org/10.1161/atvbaha.120.315607
               https://doi.org/10.1161/atvbaha.117.309578
                                                               39.  Zhao G, Lu H, Chang Z,  et  al., 2021, Single-cell RNA
            29.  Davis FM, Daugherty A, Lu HS, 2019, Updates of recent   sequencing reveals the cellular heterogeneity of aneurysmal
               aortic aneurysm research. Arterioscler Thromb Vasc Biol, 39:   infrarenal abdominal aorta. Cardiovasc Res, 117: 1402–1416.
               e83–e90.
                                                                  https://doi.org/10.1093/cvr/cvaa214
               https://doi.org/10.1161/atvbaha.119.312000
                                                               40.  Qian W, Hadi T, Silvestro M,  et al., 2022, Microskeletal
            30.  Dale MA, Ruhlman MK, Baxter BT, 2015, Inflammatory cell   stiffness  promotes  aortic  aneurysm  by  sustaining
               phenotypes in AAAs: Their role and potential as targets for   pathological vascular smooth muscle cell mechanosensation
               therapy. Arterioscler Thromb Vasc Biol, 35: 1746–1755.  via Piezo1. Nat Commun, 13: 512.
               https://doi.org/10.1161/atvbaha.115.305269         https://doi.org/10.1038/s41467-021-27874-5


            Volume 2 Issue 1 (2023)                         14                     https://doi.org/10.36922/gtm.v2i1.241
   34   35   36   37   38   39   40   41   42   43   44