Page 39 - GTM-2-1
P. 39
Global Translational Medicine Stem cells in aortic aneurysm
20. Qin Y, Cao X, Guo J, et al., 2012, Deficiency of cathepsin 31. Meher AK, Spinosa M, Davis JP, et al., 2018, Novel role of IL
S attenuates angiotensin II-induced abdominal aortic (Interleukin)-1/10. neutrophil extracellular trap formation
aneurysm formation in apolipoprotein E-deficient mice. and abdominal aortic aneurysms. Arterioscler Thromb Vasc
Cardiovasc Res, 96: 401–410. Biol, 38: 843–853.
https://doi.org/10.1093/cvr/cvs263 https://doi.org/10.1161/atvbaha.117.309897
21. Jana S, Hu M, Shen M, et al., 2019, Extracellular matrix, 32. Pedroza AJ, Tashima Y, Shad R, et al., 2020, Single-cell
regional heterogeneity of the aorta, and aortic aneurysm. transcriptomic profiling of vascular smooth muscle
Exp Mol Med, 51: 1–15. cell phenotype modulation in Marfan syndrome aortic
aneurysm. Arterioscler Thromb Vasc Biol, 40: 2195–2211.
https://doi.org/10.1038/s12276-019-0286-3
https://doi.org/10.1161/atvbaha.120.314670
22. Sun J, Sukhova GK, Zhang J, et al., 2012, Cathepsin K
deficiency reduces elastase perfusion-induced abdominal 33. Wu D, Ren P, Zheng Y, et al., 2017, NLRP3 (Nucleotide
aortic aneurysms in mice. Arterioscler Thromb Vasc Biol, 32: oligomerization domain-like receptor family, Pyrin domain
15–23. containing 3)-caspase-1 inflammasome degrades contractile
proteins: Implications for aortic biomechanical dysfunction
https://doi.org/10.1161/atvbaha.111.235002
and aneurysm and dissection formation. Arterioscler
23. Sun J, Sukhova GK, Zhang J, et al., 2011, Cathepsin L Thromb Vasc Biol, 37: 694–706.
activity is essential to elastase perfusion-induced abdominal
aortic aneurysms in mice. Arterioscler Thromb Vasc Biol, https://doi.org/10.1161/atvbaha.116.307648
31: 2500-2508. 34. Portelli SS, Hambly BD, Jeremy RW, et al., 2021, Oxidative
stress in genetically triggered thoracic aortic aneurysm: Role
https://doi.org/10.1161/atvbaha.111.230201
in pathogenesis and therapeutic opportunities. Redox Rep,
24. S24]-250Infantes D, Nus M, Navas-Madroñal M, et al., 2021, 26: 45–52.
Oxidative stress and inflammatory markers in abdominal https://doi.org/10.1080/13510002.2021.1899473
aortic aneurysm. Antioxidants (Basel), 10: 602.
35. Irace FG, Cammisotto V, Valenti V, et al., 2021, Role of
https://doi.org/10.3390/antiox10040602
oxidative stress and autophagy in thoracic aortic aneurysms.
25. Emeto TI, Moxon JV, Au M, et al., 2016, Oxidative stress JACC Basic Transl Sci, 6: 719–730.
and abdominal aortic aneurysm: Potential treatment targets. https://doi.org/10.1016/j.jacbts.2021.08.002
Clin Sci (Lond), 130: 301–315.
36. Isselbacher EM, Lino Cardenas CL, Lindsay ME, 2016,
https://doi.org/10.1042/cs20150547
Hereditary influence in thoracic aortic aneurysm and
26. Li Z, Kong W, 2020, Cellular signaling in abdominal aortic dissection. Circulation, 133: 2516–2528.
aneurysm. Cell Signal, 70: 109575.
https://doi.org/10.1161/circulationaha.116.009762
https://doi.org/10.1016/j.cellsig.2020.109575
37. Milewicz DM, Trybus KM, Guo DC, et al., 2017, Hereditary
27. Wiernicki I, Parafiniuk M, Kolasa-Wołosiuk A, et al., 2019, influence in thoracic aortic aneurysm and dissection.
Relationship between aortic wall oxidative stress/proteolytic Circulation, 133: 2516–2528.
enzyme expression and intraluminal thrombus thickness https://doi.org/10.1161/circulationaha.116.009762
indicates a novel pathomechanism in the progression of
human abdominal aortic aneurysm. FASEB J, 33: 885–895. 38. Yang H, Zhou T, Stranz A, et al., 2021, Single-Cell RNA
sequencing reveals heterogeneity of vascular cells in early
https://doi.org/10.1096/fj.201800633R
stage murine abdominal aortic aneurysm-brief report.
28. Lu H, Daugherty A, 2017, Aortic aneurysms. Arterioscler Arterioscler Thromb Vasc Biol, 41: 1158–1166.
Thromb Vasc Biol, 37: e59–e65.
https://doi.org/10.1161/atvbaha.120.315607
https://doi.org/10.1161/atvbaha.117.309578
39. Zhao G, Lu H, Chang Z, et al., 2021, Single-cell RNA
29. Davis FM, Daugherty A, Lu HS, 2019, Updates of recent sequencing reveals the cellular heterogeneity of aneurysmal
aortic aneurysm research. Arterioscler Thromb Vasc Biol, 39: infrarenal abdominal aorta. Cardiovasc Res, 117: 1402–1416.
e83–e90.
https://doi.org/10.1093/cvr/cvaa214
https://doi.org/10.1161/atvbaha.119.312000
40. Qian W, Hadi T, Silvestro M, et al., 2022, Microskeletal
30. Dale MA, Ruhlman MK, Baxter BT, 2015, Inflammatory cell stiffness promotes aortic aneurysm by sustaining
phenotypes in AAAs: Their role and potential as targets for pathological vascular smooth muscle cell mechanosensation
therapy. Arterioscler Thromb Vasc Biol, 35: 1746–1755. via Piezo1. Nat Commun, 13: 512.
https://doi.org/10.1161/atvbaha.115.305269 https://doi.org/10.1038/s41467-021-27874-5
Volume 2 Issue 1 (2023) 14 https://doi.org/10.36922/gtm.v2i1.241

