Page 63 - GTM-2-1
P. 63
Global Translational Medicine ABE gene therapy for CVDs
45. Hwee DT, Hartman JJ, Wang J, et al., 2019, Abstract 332: 56. Ledford H. 2022, CRISPR ‘cousin’ put to the test in landmark
Pharmacologic characterization of the cardiac myosin heart-disease trial. Nature, 607: 647.
inhibitor, CK-3773274: A potential therapeutic approach for https://doi.org/10.1038/d41586-022-01951-1
hypertrophic cardiomyopathy. Circ Res, 125: A332–A332.
57. Miller SM, Wang T, Randolph PB, et al., 2020, Continuous
https://doi.org/10.1161/res.125.suppl_1.332
evolution of SpCas9 variants compatible with non-G PAMs.
46. Ma S, Jiang W, Liu X, et al., 2021, Efficient correction of a Nat Biotechnol, 38: 471–481.
hypertrophic cardiomyopathy mutation by ABEmax-NG.
Circ Res, 129: 895–908. https://doi.org/10.1038/s41587-020-0412-8
58. Huang TP, Zhao KT, Miller SM, et al., 2019, Circularly
https://doi.org/10.1161/CIRCRESAHA.120.318674
permuted and PAM-modified Cas9 variants broaden the
47. Halpern J, O’Hara SE, Doxzen KW, et al., 2019, Societal and targeting scope of base editors. Nat Biotechnol, 37: 626–631.
ethical impacts of germline genome editing: How can we
secure human rights? CRISPR J, 2: 293–298. https://doi.org/10.1038/s41587-019-0134-y
https://doi.org/10.1089/crispr.2019.0042 59. Chen L, Zhang S, Xue N, et al., 2022, Engineering a precise
adenine base editor with minimal bystander editing. Nat
48. Guo Y, Pu WT. 2020, Cardiomyocyte maturation: New Chem Biol, 19: 101–110.
phase in development. Circ Res, 126: 1086–1106.
https://doi.org/10.1038/s41589-022-01163-8
https://doi.org/10.1161/CIRCRESAHA.119.315862
60. Marquart KF, Allam A, Janjuha S, et al., 2021, Predicting
49. Virani SS, Alonso A, Benjamin EJ, et al., 2020, Heart base editing outcomes with an attention-based deep learning
disease and stroke statistics-2020 update: A report from the algorithm trained on high-throughput target library screens.
American Heart Association. Circulation, 141: e139–e596, Nat Commun, 12: 5114.
https://doi.org/10.1161/cir.0000000000000757 https://doi.org/10.1038/s41467-021-25375-z
50. Chen H, Howatt DA, Franklin MK, et al., 2022, A mini-review 61. Pallaseni A, Peets EM, Koeppel J, et al., 2022, Predicting
on quantification of atherosclerosis in hypercholesterolemic base editing outcomes using position-specific sequence
mice. GTM, 1: 72. determinants. Nucleic Acids Res, 50: 3551–3564.
https://doi.org/10.36922/gtm.v1i1.76 https://doi.org/10.1093/nar/gkac161
51. Ference BA, Ginsberg HN, Graham I, et al., 2017, Low- 62. Arbab M, Shen MW, Mok B, et al., 2020, Determinants
density lipoproteins cause atherosclerotic cardiovascular of base editing outcomes from target library analysis and
disease. 1. Evidence from genetic, epidemiologic, and machine learning. Cell, 182: 463–480.e430.
clinical studies. A consensus statement from the European
Atherosclerosis Society Consensus Panel. Eur Heart J, https://doi.org/10.1016/j.cell.2020.05.037
38: 2459–2472. 63. Winter J, Luu A, Gapinske M, et al., 2019, Targeted exon
https://doi.org/10.1093/eurheartj/ehx144 skipping with AAV-mediated split adenine base editors. Cell
Discov, 5: 41.
52. Qian YW, Schmidt RJ, Zhang Y, et al., 2007, Secreted PCSK9
downregulates low density lipoprotein receptor through https://doi.org/10.1038/s41421-019-0109-7
receptor-mediated endocytosis. J Lipid Res, 48: 1488–1498. 64. Zhou C, Sun Y, Yan R, et al., 2019, Off-target RNA mutation
https://doi.org/10.1194/jlr.M700071-JLR200 induced by DNA base editing and its elimination by
mutagenesis. Nature, 571: 275–278.
53. Cohen J, Pertsemlidis A, Kotowski IK, 2005, Low LDL
cholesterol in individuals of African descent resulting https://doi.org/10.1038/s41586-019-1314-0
from frequent nonsense mutations in PCSK9. Nat Genet, 65. Fu Y, Foden JA, Khayter C, et al., 2013, High-frequency off-
37: 161–165. target mutagenesis induced by CRISPR-Cas nucleases in
https://doi.org/10.1038/ng1509 human cells. Nat Biotechnol, 31: 822–826.
54. Cohen JC, Boerwinkle E, Mosley TH Jr., et al., 2006, Sequence https://doi.org/10.1038/nbt.2623
variations in PCSK9, low LDL, and protection against 66. Pattanayak V, Lin S, Guilinger JP, et al., 2013, High-
coronary heart disease. N Engl J Med, 354: 1264–1272. throughput profiling of off-target DNA cleavage reveals
https://doi.org/10.1056/NEJMoa054013 RNA-programmed Cas9 nuclease specificity. Nat Biotechnol,
31: 839–843.
55. Musunuru K, Chadwick AC, Mizoguchi T, et al., 2021,
In vivo CRISPR base editing of PCSK9 durably lowers https://doi.org/10.1038/nbt.2673
cholesterol in primates. Nature, 593: 429–434.
67. Doman JL, Raguram A, Newby GA, et al., 2020, Evaluation
https://doi.org/10.1038/s41586-021-03534-y and minimization of Cas9-independent off-target DNA
Volume 2 Issue 1 (2023) 12 https://doi.org/10.36922/gtm.232

