Page 63 - GTM-2-1
P. 63

Global Translational Medicine                                                ABE gene therapy for CVDs



            45.  Hwee DT, Hartman JJ, Wang J, et al., 2019, Abstract 332:   56.  Ledford H. 2022, CRISPR ‘cousin’ put to the test in landmark
               Pharmacologic  characterization  of  the  cardiac  myosin   heart-disease trial. Nature, 607: 647.
               inhibitor, CK-3773274: A potential therapeutic approach for      https://doi.org/10.1038/d41586-022-01951-1
               hypertrophic cardiomyopathy. Circ Res, 125: A332–A332.
                                                               57.  Miller SM, Wang T, Randolph PB, et al., 2020, Continuous
               https://doi.org/10.1161/res.125.suppl_1.332
                                                                  evolution of SpCas9 variants compatible with non-G PAMs.
            46.  Ma S, Jiang W, Liu X, et al., 2021, Efficient correction of a   Nat Biotechnol, 38: 471–481.
               hypertrophic cardiomyopathy mutation by ABEmax-NG.
               Circ Res, 129: 895–908.                            https://doi.org/10.1038/s41587-020-0412-8
                                                               58.  Huang TP, Zhao KT, Miller  SM,  et al., 2019,  Circularly
               https://doi.org/10.1161/CIRCRESAHA.120.318674
                                                                  permuted and PAM-modified Cas9 variants broaden the
            47.  Halpern J, O’Hara SE, Doxzen KW, et al., 2019, Societal and   targeting scope of base editors. Nat Biotechnol, 37: 626–631.
               ethical impacts of germline genome editing: How can we
               secure human rights? CRISPR J, 2: 293–298.         https://doi.org/10.1038/s41587-019-0134-y
               https://doi.org/10.1089/crispr.2019.0042        59.  Chen L, Zhang S, Xue N, et al., 2022, Engineering a precise
                                                                  adenine base editor with minimal bystander  editing.  Nat
            48.  Guo Y, Pu WT. 2020, Cardiomyocyte maturation: New   Chem Biol, 19: 101–110.
               phase in development. Circ Res, 126: 1086–1106.
                                                                  https://doi.org/10.1038/s41589-022-01163-8
               https://doi.org/10.1161/CIRCRESAHA.119.315862
                                                               60.  Marquart KF, Allam A, Janjuha S, et al., 2021, Predicting
            49.  Virani SS, Alonso A, Benjamin EJ,  et al., 2020, Heart   base editing outcomes with an attention-based deep learning
               disease and stroke statistics-2020 update: A report from the   algorithm trained on high-throughput target library screens.
               American Heart Association. Circulation, 141: e139–e596,   Nat Commun, 12: 5114.
               https://doi.org/10.1161/cir.0000000000000757       https://doi.org/10.1038/s41467-021-25375-z
            50.  Chen H, Howatt DA, Franklin MK, et al., 2022, A mini-review   61.  Pallaseni A, Peets EM, Koeppel J,  et al., 2022, Predicting
               on quantification of atherosclerosis in hypercholesterolemic   base editing outcomes using position-specific sequence
               mice. GTM, 1: 72.                                  determinants. Nucleic Acids Res, 50: 3551–3564.
               https://doi.org/10.36922/gtm.v1i1.76               https://doi.org/10.1093/nar/gkac161
            51.  Ference BA, Ginsberg HN, Graham I,  et al., 2017, Low-  62.  Arbab  M,  Shen  MW,  Mok  B,  et al.,  2020,  Determinants
               density lipoproteins cause atherosclerotic cardiovascular   of base editing outcomes from target library analysis and
               disease. 1. Evidence from genetic, epidemiologic, and   machine learning. Cell, 182: 463–480.e430.
               clinical studies. A consensus statement from the European
               Atherosclerosis Society Consensus Panel.  Eur Heart J,      https://doi.org/10.1016/j.cell.2020.05.037
               38: 2459–2472.                                  63.  Winter J, Luu A, Gapinske M, et al., 2019, Targeted exon
               https://doi.org/10.1093/eurheartj/ehx144           skipping with AAV-mediated split adenine base editors. Cell
                                                                  Discov, 5: 41.
            52.  Qian YW, Schmidt RJ, Zhang Y, et al., 2007, Secreted PCSK9
               downregulates  low  density  lipoprotein  receptor  through      https://doi.org/10.1038/s41421-019-0109-7
               receptor-mediated endocytosis. J Lipid Res, 48: 1488–1498.   64.  Zhou C, Sun Y, Yan R, et al., 2019, Off-target RNA mutation
               https://doi.org/10.1194/jlr.M700071-JLR200         induced by DNA base editing and its elimination by
                                                                  mutagenesis. Nature, 571: 275–278.
            53.  Cohen J, Pertsemlidis A, Kotowski IK, 2005, Low LDL
               cholesterol in individuals of African descent resulting      https://doi.org/10.1038/s41586-019-1314-0
               from frequent nonsense mutations in PCSK9.  Nat Genet,   65.  Fu Y, Foden JA, Khayter C, et al., 2013, High-frequency off-
               37: 161–165.                                       target mutagenesis induced by CRISPR-Cas nucleases in
               https://doi.org/10.1038/ng1509                     human cells. Nat Biotechnol, 31: 822–826.
            54.  Cohen JC, Boerwinkle E, Mosley TH Jr., et al., 2006, Sequence      https://doi.org/10.1038/nbt.2623
               variations in PCSK9, low LDL, and protection against   66.  Pattanayak V, Lin S, Guilinger JP,  et al., 2013, High-
               coronary heart disease. N Engl J Med, 354: 1264–1272.   throughput profiling of off-target DNA cleavage reveals
               https://doi.org/10.1056/NEJMoa054013               RNA-programmed Cas9 nuclease specificity. Nat Biotechnol,
                                                                  31: 839–843.
            55.  Musunuru K, Chadwick AC, Mizoguchi T,  et al., 2021,
               In vivo CRISPR base editing of PCSK9 durably lowers      https://doi.org/10.1038/nbt.2673
               cholesterol in primates. Nature, 593: 429–434.
                                                               67.  Doman JL, Raguram A, Newby GA, et al., 2020, Evaluation
               https://doi.org/10.1038/s41586-021-03534-y         and minimization of Cas9-independent off-target DNA


            Volume 2 Issue 1 (2023)                         12                        https://doi.org/10.36922/gtm.232
   58   59   60   61   62   63   64   65   66   67   68