Page 64 - GTM-2-1
P. 64

Global Translational Medicine                                                ABE gene therapy for CVDs



               editing by cytosine base editors. Nat Biotechnol, 38: 620–628.      https://doi.org/10.1038/nmeth.3284
               https://doi.org/10.1038/s41587-020-0414-6       75.  Tsai SQ, Nguyen NT, Malagon-Lopez J,  et al., 2017,
                                                                  CIRCLE-seq: A highly sensitive in vitro screen for genome-
            68.  Bae S, Park J, Kim JS. 2014, Cas-OFFinder: A  fast and
               versatile algorithm that searches for potential off-target   wide CRISPR-Cas9 nuclease off-targets.  Nat Methods,
               sites of Cas9 RNA-guided endonucleases.  Bioinformatics,   14: 607–614.
               30: 1473–1475.                                     https://doi.org/10.1038/nmeth.4278
               https://doi.org/10.1093/bioinformatics/btu048   76.  Tsai SQ, Zheng  Z, Nguyen NT,  et  al., 2015, GUIDE-seq
                                                                  enables genome-wide profiling of off-target cleavage by
            69.  Xiao A, Cheng Z, Kong L, et al., 2014, CasOT: A genome-
               wide Cas9/gRNA off-target searching tool. Bioinformatics,   CRISPR-Cas nucleases. Nat Biotechnol, 33: 187–197.
               30: 1180–1182.                                     https://doi.org/10.1038/nbt.3117
               https://doi.org/10.1093/bioinformatics/btt764   77.  Wang X, Wang Y, Wu X, et al., 2015, Unbiased detection
                                                                  of off-target cleavage by CRISPR-Cas9 and TALENs using
            70.  Chuai G, Ma H, Yan J, et al., 2018, DeepCRISPR: Optimized
               CRISPR guide RNA design by deep learning. Genome Biol,   integrase-defective lentiviral vectors.  Nat  Biotechnol,
               19: 80.                                            33: 175–178.
                                                                  https://doi.org/10.1038/nbt.3127
               https://doi.org/10.1186/s13059-018-1459-4
                                                               78.  Iyer V, Shen B, Zhang W, et al., 2015, Off-target mutations
            71.  Listgarten J, Weinstein M, Kleinstiver BP,  et al., 2018,
               Prediction of off-target activities for the end-to-end design   are rare in Cas9-modified mice. Nat Methods, 12: 479.
               of CRISPR guide RNAs. Nat Biomed Eng, 2: 38–47.      https://doi.org/10.1038/nmeth.3408
               https://doi.org/10.1038/s41551-017-0178-6       79.  Wienert B, Wyman SK, Richardson CD,  et al., 2019,
                                                                  Unbiased detection of CRISPR off-targets  in vivo using
            72.  Liang P, Xie X, Zhi S, et al., 2019, Genome-wide profiling of
               adenine base editor specificity by EndoV-seq. Nat Commun,   DISCOVER-Seq. Science (New York, N.Y.), 364: 286–289.
               10: 67.                                            https://doi.org/10.1126/science.aav9023
               https://doi.org/10.1038/s41467-018-07988-z      80.  Liang SQ, Liu P, Smith JL,  et al., 2022, Genome-wide
                                                                  detection of CRISPR editing in vivo using GUIDE-tag. Nat
            73.  Cameron P, Fuller CK, Donohoue PD, et al., 2017, Mapping
               the genomic landscape of CRISPR-Cas9 cleavage.  Nat   Commun, 13: 437.
               Methods, 14: 600–606.                              https://doi.org/10.1038/s41467-022-28135-9
               https://doi.org/10.1038/nmeth.4284              81.  Li J, Yu W, Huang S,  et al., 2021, Structure-guided
                                                                  engineering of adenine base editor with minimized RNA
            74.  Kim D, Bae S, Park J, et al., 2015, Digenome-seq: Genome-
               wide profiling of CRISPR-Cas9 off-target effects in human   off-targeting activity. Nat Commun, 12: 2287.
               cells. Nat Methods, 12: 237–243, 1 p following 243.      https://doi.org/10.1038/s41467-021-22519-z































            Volume 2 Issue 1 (2023)                         13                        https://doi.org/10.36922/gtm.232
   59   60   61   62   63   64   65   66   67   68   69