Page 64 - GTM-2-1
P. 64
Global Translational Medicine ABE gene therapy for CVDs
editing by cytosine base editors. Nat Biotechnol, 38: 620–628. https://doi.org/10.1038/nmeth.3284
https://doi.org/10.1038/s41587-020-0414-6 75. Tsai SQ, Nguyen NT, Malagon-Lopez J, et al., 2017,
CIRCLE-seq: A highly sensitive in vitro screen for genome-
68. Bae S, Park J, Kim JS. 2014, Cas-OFFinder: A fast and
versatile algorithm that searches for potential off-target wide CRISPR-Cas9 nuclease off-targets. Nat Methods,
sites of Cas9 RNA-guided endonucleases. Bioinformatics, 14: 607–614.
30: 1473–1475. https://doi.org/10.1038/nmeth.4278
https://doi.org/10.1093/bioinformatics/btu048 76. Tsai SQ, Zheng Z, Nguyen NT, et al., 2015, GUIDE-seq
enables genome-wide profiling of off-target cleavage by
69. Xiao A, Cheng Z, Kong L, et al., 2014, CasOT: A genome-
wide Cas9/gRNA off-target searching tool. Bioinformatics, CRISPR-Cas nucleases. Nat Biotechnol, 33: 187–197.
30: 1180–1182. https://doi.org/10.1038/nbt.3117
https://doi.org/10.1093/bioinformatics/btt764 77. Wang X, Wang Y, Wu X, et al., 2015, Unbiased detection
of off-target cleavage by CRISPR-Cas9 and TALENs using
70. Chuai G, Ma H, Yan J, et al., 2018, DeepCRISPR: Optimized
CRISPR guide RNA design by deep learning. Genome Biol, integrase-defective lentiviral vectors. Nat Biotechnol,
19: 80. 33: 175–178.
https://doi.org/10.1038/nbt.3127
https://doi.org/10.1186/s13059-018-1459-4
78. Iyer V, Shen B, Zhang W, et al., 2015, Off-target mutations
71. Listgarten J, Weinstein M, Kleinstiver BP, et al., 2018,
Prediction of off-target activities for the end-to-end design are rare in Cas9-modified mice. Nat Methods, 12: 479.
of CRISPR guide RNAs. Nat Biomed Eng, 2: 38–47. https://doi.org/10.1038/nmeth.3408
https://doi.org/10.1038/s41551-017-0178-6 79. Wienert B, Wyman SK, Richardson CD, et al., 2019,
Unbiased detection of CRISPR off-targets in vivo using
72. Liang P, Xie X, Zhi S, et al., 2019, Genome-wide profiling of
adenine base editor specificity by EndoV-seq. Nat Commun, DISCOVER-Seq. Science (New York, N.Y.), 364: 286–289.
10: 67. https://doi.org/10.1126/science.aav9023
https://doi.org/10.1038/s41467-018-07988-z 80. Liang SQ, Liu P, Smith JL, et al., 2022, Genome-wide
detection of CRISPR editing in vivo using GUIDE-tag. Nat
73. Cameron P, Fuller CK, Donohoue PD, et al., 2017, Mapping
the genomic landscape of CRISPR-Cas9 cleavage. Nat Commun, 13: 437.
Methods, 14: 600–606. https://doi.org/10.1038/s41467-022-28135-9
https://doi.org/10.1038/nmeth.4284 81. Li J, Yu W, Huang S, et al., 2021, Structure-guided
engineering of adenine base editor with minimized RNA
74. Kim D, Bae S, Park J, et al., 2015, Digenome-seq: Genome-
wide profiling of CRISPR-Cas9 off-target effects in human off-targeting activity. Nat Commun, 12: 2287.
cells. Nat Methods, 12: 237–243, 1 p following 243. https://doi.org/10.1038/s41467-021-22519-z
Volume 2 Issue 1 (2023) 13 https://doi.org/10.36922/gtm.232

