Page 62 - GTM-2-1
P. 62
Global Translational Medicine ABE gene therapy for CVDs
https://doi.org/10.1038/s41579-019-0299-x https://doi.org/10.1038/s41565-020-0669-6
23. Kleinstiver BP, Pattanayak V, Prew MS, et al., 2016, High- 34. Hoy SM. 2018, Patisiran: First global approval. Drugs,
fidelity CRISPR-Cas9 nucleases with no detectable genome- 78: 1625–1631.
wide off-target effects. Nature, 529: 490–495.
https://doi.org/10.1007/s40265-018-0983-6
https://doi.org/10.1038/nature16526
35. Ahmed MS, Ikram S, Bibi N, et al., 2018, Hutchinson-
24. Nishimasu H, Shi X, Ishiguro S, et al., 2018, Engineered Gilford progeria syndrome: A premature aging disease. Mol
CRISPR-Cas9 nuclease with expanded targeting space. Neurobiol, 55: 4417–4427.
Science, 361: 1259–1262.
https://doi.org/10.1007/s12035-017-0610-7
https://doi.org/10.1126/science.aas9129
36. De Sandre-Giovannoli A, Bernard R, Cau P, et al., 2003,
25. Walton RT, Christie KA, Whittaker MN, et al., 2020, Lamin a truncation in Hutchinson-Gilford progeria. Science,
Unconstrained genome targeting with near-PAMless 300: 2055.
engineered CRISPR-Cas9 variants. Science, 368: 290–296.
https://doi.org/10.1126/science.1084125
https://doi.org/10.1126/science.aba8853
37. Eriksson M, Brown WT, Gordon LB, et al., 2003, Recurrent
26. Hermonat PL, Muzyczka N. 1984, Use of adeno-associated de novo point mutations in lamin A cause Hutchinson-
virus as a mammalian DNA cloning vector: Transduction Gilford progeria syndrome. Nature, 423: 293–298.
of neomycin resistance into mammalian tissue culture cells.
Proc Natl Acad Sci U S A, 81: 6466–6470. https://doi.org/10.1038/nature01629
https://doi.org/10.1073/pnas.81.20.6466 38. Dechat T, Shimi T, Adam SA, et al., 2007, Alterations in
mitosis and cell cycle progression caused by a mutant lamin
27. Tratschin JD, West MH, Sandbank T, et al., 1984, A human A known to accelerate human aging. Proc Natl Acad Sci
parvovirus, adeno-associated virus, as a eucaryotic vector: U S A, 104: 4955–4960.
Transient expression and encapsidation of the procaryotic
gene for chloramphenicol acetyltransferase. Mol Cell Biol, https://doi.org/10.1073/pnas.0700854104
4: 2072–2081. 39. Dhillon S. 2021, Lonafarnib: First approval. Drugs, 2021,
https://doi.org/10.1128/mcb.4.10.2072-2081 81: 283–289.
28. Pupo A, Fernández A, Low Sh, et al., 2022, AAAV vectors: The https://doi.org/10.1007/s40265-020-01464-z
Rubik’s cube of human gene therapy. Mol Ther, 30: 3515–3541. 40. Maron BJ, Gardin JM, Flack JM, et al., 1995, Prevalence of
https://doi.org/10.1016/j.ymthe.2022.09.015 hypertrophic cardiomyopathy in a general population of
young adults. Echocardiographic analysis of 4111 subjects
29. Truong DJ, Kühner K, Kühn R, et al., 2015, Development in the CARDIA Study. Coronary Artery Risk Development
of an intein-mediated split-Cas9 system for gene therapy. in (Young) Adults. Circulation, 92: 785–789.
Nucleic Acids Res, 43, 6450–6458.
https://doi.org/10.1161/01.cir.92.4.785
https://doi.org/10.1093/nar/gkv601
41. Tuohy CV, Kaul S, Song HK, et al., 2020, Hypertrophic
30. Koblan LW, Erdos MR, Wilson C, 2021, In vivo base editing cardiomyopathy: The future of treatment. Eur J Heart Fail,
rescues Hutchinson-Gilford progeria syndrome in mice. 22: 228–240.
Nature, 589: 608–614.
https://doi.org/10.1002/ejhf.1715
https://doi.org/10.1038/s41586-020-03086-7
42. Sabater-Molina M, Pérez-Sánchez I, Del Rincón JP, et al.,
31. Davis JR, Wang X, Witte TP, et al., 2022, Efficient in vivo 2018, Genetics of hypertrophic cardiomyopathy: A review
base editing via single adeno-associated viruses with size- of current state. Clin Genet, 93: 3–14.
optimized genomes encoding compact adenine base editors.
Nat Biomed Eng, 6: 1272–1283. https://doi.org/10.1111/cge.13027
https://doi.org/10.1038/s41551-022-00911-4 43. Keam SJ. 2022, Mavacamten: First approval. Drugs,
82: 1127–1135.
32. Albertsen CH, Kulkarni JA, Witzigmann D, et al., 2022, The
role of lipid components in lipid nanoparticles for vaccines https://doi.org/10.1007/s40265-022-01739-7
and gene therapy. Adv Drug Deliv Rev, 188: 114416. 44. Saberi S, Cardim N, Yamani M, et al., 2021, Mavacamten
https://doi.org/10.1016/j.addr.2022.114416 favorably impacts cardiac structure in obstructive
hypertrophic cardiomyopathy: EXPLORER-HCM cardiac
33. Cheng Q, Wei T, Farbiak L, et al., 2020, Selective organ
targeting (SORT) nanoparticles for tissue-specific mRNA magnetic resonance substudy analysis. Circulation,
delivery and CRISPR-Cas gene editing. Nat Nanotechnol, 143: 606–608.
15: 313–320. https://doi.org/10.1161/circulationaha.120.052359
Volume 2 Issue 1 (2023) 11 https://doi.org/10.36922/gtm.232

