Page 62 - GTM-2-1
P. 62

Global Translational Medicine                                                ABE gene therapy for CVDs



               https://doi.org/10.1038/s41579-019-0299-x          https://doi.org/10.1038/s41565-020-0669-6
            23.  Kleinstiver BP, Pattanayak V, Prew MS, et al., 2016, High-  34.  Hoy SM. 2018, Patisiran: First global approval.  Drugs,
               fidelity CRISPR-Cas9 nucleases with no detectable genome-  78: 1625–1631.
               wide off-target effects. Nature, 529: 490–495.
                                                                  https://doi.org/10.1007/s40265-018-0983-6
               https://doi.org/10.1038/nature16526
                                                               35.  Ahmed MS, Ikram S, Bibi N,  et  al., 2018, Hutchinson-
            24.  Nishimasu H, Shi X, Ishiguro S,  et  al., 2018, Engineered   Gilford progeria syndrome: A premature aging disease. Mol
               CRISPR-Cas9 nuclease with expanded targeting space.   Neurobiol, 55: 4417–4427.
               Science, 361: 1259–1262.
                                                                  https://doi.org/10.1007/s12035-017-0610-7
               https://doi.org/10.1126/science.aas9129
                                                               36.  De Sandre-Giovannoli A, Bernard R, Cau P,  et al., 2003,
            25.  Walton RT, Christie KA, Whittaker MN,  et al., 2020,   Lamin a truncation in Hutchinson-Gilford progeria. Science,
               Unconstrained genome targeting with near-PAMless   300: 2055.
               engineered CRISPR-Cas9 variants. Science, 368: 290–296.
                                                                  https://doi.org/10.1126/science.1084125
               https://doi.org/10.1126/science.aba8853
                                                               37.  Eriksson M, Brown WT, Gordon LB, et al., 2003, Recurrent
            26.  Hermonat PL, Muzyczka N. 1984, Use of adeno-associated   de novo point mutations in lamin A cause Hutchinson-
               virus as a mammalian DNA cloning vector: Transduction   Gilford progeria syndrome. Nature, 423: 293–298.
               of neomycin resistance into mammalian tissue culture cells.
               Proc Natl Acad Sci U S A, 81: 6466–6470.           https://doi.org/10.1038/nature01629
               https://doi.org/10.1073/pnas.81.20.6466         38.  Dechat T, Shimi T, Adam SA,  et al., 2007, Alterations in
                                                                  mitosis and cell cycle progression caused by a mutant lamin
            27.  Tratschin JD, West MH, Sandbank T, et al., 1984, A human   A known to accelerate human aging.  Proc Natl Acad Sci
               parvovirus, adeno-associated virus, as a eucaryotic vector:   U S A, 104: 4955–4960.
               Transient expression and encapsidation of the procaryotic
               gene for chloramphenicol acetyltransferase.  Mol Cell Biol,      https://doi.org/10.1073/pnas.0700854104
               4: 2072–2081.                                   39.  Dhillon S. 2021, Lonafarnib: First approval.  Drugs, 2021,
               https://doi.org/10.1128/mcb.4.10.2072-2081         81: 283–289.
            28.  Pupo A, Fernández A, Low Sh, et al., 2022, AAAV vectors: The      https://doi.org/10.1007/s40265-020-01464-z
               Rubik’s cube of human gene therapy. Mol Ther, 30: 3515–3541.   40.  Maron BJ, Gardin JM, Flack JM, et al., 1995, Prevalence of
               https://doi.org/10.1016/j.ymthe.2022.09.015        hypertrophic cardiomyopathy in a general population of
                                                                  young adults. Echocardiographic analysis of 4111 subjects
            29.  Truong DJ, Kühner K, Kühn R, et al., 2015, Development   in the CARDIA Study. Coronary Artery Risk Development
               of an intein-mediated split-Cas9 system for gene therapy.   in (Young) Adults. Circulation, 92: 785–789.
               Nucleic Acids Res, 43, 6450–6458.
                                                                  https://doi.org/10.1161/01.cir.92.4.785
               https://doi.org/10.1093/nar/gkv601
                                                               41.  Tuohy CV, Kaul S, Song HK,  et al., 2020, Hypertrophic
            30.  Koblan LW, Erdos MR, Wilson C, 2021, In vivo base editing   cardiomyopathy: The future of treatment. Eur J Heart Fail,
               rescues Hutchinson-Gilford progeria syndrome in mice.   22: 228–240.
               Nature, 589: 608–614.
                                                                  https://doi.org/10.1002/ejhf.1715
               https://doi.org/10.1038/s41586-020-03086-7
                                                               42.  Sabater-Molina M, Pérez-Sánchez I, Del Rincón JP,  et al.,
            31.  Davis JR, Wang X, Witte TP, et al., 2022, Efficient in vivo   2018, Genetics of hypertrophic cardiomyopathy: A review
               base editing via single adeno-associated viruses with size-  of current state. Clin Genet, 93: 3–14.
               optimized genomes encoding compact adenine base editors.
               Nat Biomed Eng, 6: 1272–1283.                      https://doi.org/10.1111/cge.13027
               https://doi.org/10.1038/s41551-022-00911-4      43.  Keam SJ. 2022, Mavacamten: First approval.  Drugs,
                                                                  82: 1127–1135.
            32.  Albertsen CH, Kulkarni JA, Witzigmann D, et al., 2022, The
               role of lipid components in lipid nanoparticles for vaccines      https://doi.org/10.1007/s40265-022-01739-7
               and gene therapy. Adv Drug Deliv Rev, 188: 114416.   44.  Saberi S, Cardim N, Yamani M, et al., 2021, Mavacamten
               https://doi.org/10.1016/j.addr.2022.114416         favorably impacts cardiac structure in obstructive
                                                                  hypertrophic cardiomyopathy: EXPLORER-HCM cardiac
            33.  Cheng  Q,  Wei  T,  Farbiak  L,  et al.,  2020,  Selective  organ
               targeting (SORT) nanoparticles for tissue-specific mRNA   magnetic  resonance  substudy  analysis.  Circulation,
               delivery and CRISPR-Cas gene editing.  Nat Nanotechnol,   143: 606–608.
               15: 313–320.                                       https://doi.org/10.1161/circulationaha.120.052359


            Volume 2 Issue 1 (2023)                         11                        https://doi.org/10.36922/gtm.232
   57   58   59   60   61   62   63   64   65   66   67