Page 61 - GTM-2-1
P. 61

Global Translational Medicine                                                ABE gene therapy for CVDs



            Consent for publication                            11.  Jin S, Zong Y, Gao G, et al., 2019, Cytosine, but not adenine,
                                                                  base editors induce genome-wide off-target mutations in
            Not applicable.                                       rice. Science (New York, N.Y.), 364: 292–295.
            Availability of data                                  https://doi.org/10.1126/science.aaw7166

            Not applicable.                                    12.  Zuo E, Sun Y, Wei W,  et al., 2019, Cytosine base editor
                                                                  generates substantial off-target single-nucleotide variants in
            References                                            mouse embryos. Science, 364: 289–292.

            1.   Cambien F, Tiret L. 2007, Genetics of cardiovascular      https://doi.org/10.1126/science.aav9973
               diseases: From single mutations to the whole genome.   13.  Koblan LW, Doman JL, Wilson C, et al., 2018, Improving
               Circulation, 116: 1714–1724.                       cytidine and adenine base editors by expression optimization
               https://doi.org/10.1161/CIRCULATIONAHA.106.661751  and ancestral reconstruction. Nat Biotechnol, 36: 843–846.
            2.   Humphries SE. 2017, Common variants for cardiovascular      https://doi.org/10.1038/nbt.4172
               disease:  Clinical  utility  confirmed.  Circulation,   14.  Huang S, Liao Z, Li X, et al., 2019, Developing ABEmax-NG
               135: 2102–2105.                                    with precise targeting and expanded editing scope to
               https://doi.org/10.1161/CIRCULATIONAHA.117.027798  model pathogenic splice site mutations  in vivo.  iScience,
                                                                  15: 640–648.
            3.   Zhuang X, Tian M, Li L,  et al., 2022, Identification of
               potential hub genes for the diagnosis and therapy of dilated      https://doi.org/10.1016/j.isci.2019.05.008
               cardiomyopathy with heart failure through bioinformatics   15.  Richter MF, Zhao KT, Eton E, et al., 2020, Phage-assisted
               analysis. GTM, 1: 104.                             evolution of an adenine base editor with improved
               https://doi.org/10.36922/gtm.v1i1.104              Cas domain compatibility and activity.  Nat Biotechnol,
                                                                  38: 883–891.
            4.   Kalayinia S, Goodarzynejad H, Maleki M, et al., 2018, Next
               generation sequencing applications for cardiovascular      https://doi.org/10.1038/s41587-020-0453-z
               disease. Ann Med, 50:91–109.                    16.  Gaudelli NM, Lam DK, Rees HA,  et al., 2020, Directed
               https://doi.org/10.1080/07853890.2017.1392595      evolution of adenine base editors with increased activity and
                                                                  therapeutic application. Nat Biotechnol, 38: 892–900.
            5.   Jiang W, Marraffini LA. 2015, CRISPR-Cas: New tools for
               genetic  manipulations  from  bacterial  immunity  systems.      https://doi.org/10.1038/s41587-020-0491-6
               Annu Rev Microbiol, 69: 209–228.                17.  Hu JH, Miller SM, Geurts MH, et al., 2018, Evolved Cas9
               https://doi.org/10.1146/annurev-micro-091014-104441  variants with broad PAM compatibility and high DNA
                                                                  specificity. Nature, 556: 57–63.
            6.   Marraffini LA. 2015, CRISPR-Cas immunity in prokaryotes.
               Nature, 526: 55–61.                                https://doi.org/10.1038/nature26155
               https://doi.org/10.1038/nature15386             18.  Hsu PD, Scott DA, Weinstein JA, et al., 2013, DNA targeting
                                                                  specificity of RNA-guided Cas9 nucleases. Nat Biotechnol,
            7.   Jinek M, Chylinski K, Fonfara I, et al., 2012, A programmable   31: 827–832.
               dual-RNA-guided DNA endonuclease in adaptive bacterial
               immunity. Science (New York, N.Y.), 337: 816–821.      https://doi.org/10.1038/nbt.2647
               https://doi.org/10.1126/science.1225829         19.  Ran FA, Cong L, Yan WX, et al., 2015, In vivo genome editing
                                                                  using Staphylococcus aureus Cas9. Nature, 520: 186–191.
            8.   Komor AC, Kim YB, Packer MS, et al., 2016, Programmable
               editing of a target base in genomic DNA without double-     https://doi.org/10.1038/nature14299
               stranded DNA cleavage. Nature, 533: 420–424.    20.  Jiang F, Doudna JA. 2017,  CRISPR-Cas9 structures and
               https://doi.org/10.1038/nature17946                mechanisms. Annu Rev Biophys, 46: 505–529.
            9.   Gaudelli NM, Komor AC, Rees HA,  et al., 2017,      https://doi.org/10.1146/annurev-biophys-062215-010822.
               Programmable base editing of A•T to G•C in genomic DNA   21.  Makarova KS, Wolf YI, Alkhnbashi OS,  et al., 2015, An
               without DNA cleavage. Nature, 551: 464–471.        updated evolutionary classification of CRISPR-Cas systems.
               https://doi.org/10.1038/nature24644                Nat Rev Microbiol, 13: 722–736.
            10.  Landrum MJ, Lee JM, Benson M, et al., 2016, ClinVar: Public      https://doi.org/10.1038/nrmicro3569
               archive of interpretations of clinically relevant variants.   22.  Makarova KS, Wolf YI, Iranzo J, et al., 2020, Evolutionary
               Nucleic Acids Res, 44: D862–D868.
                                                                  classification of CRISPR-Cas systems: A burst of class 2 and
               https://doi.org/10.1093/nar/gkv1222                derived variants. Nat Rev Microbiol, 18: 67–83.


            Volume 2 Issue 1 (2023)                         10                        https://doi.org/10.36922/gtm.232
   56   57   58   59   60   61   62   63   64   65   66