Page 61 - GTM-2-1
P. 61
Global Translational Medicine ABE gene therapy for CVDs
Consent for publication 11. Jin S, Zong Y, Gao G, et al., 2019, Cytosine, but not adenine,
base editors induce genome-wide off-target mutations in
Not applicable. rice. Science (New York, N.Y.), 364: 292–295.
Availability of data https://doi.org/10.1126/science.aaw7166
Not applicable. 12. Zuo E, Sun Y, Wei W, et al., 2019, Cytosine base editor
generates substantial off-target single-nucleotide variants in
References mouse embryos. Science, 364: 289–292.
1. Cambien F, Tiret L. 2007, Genetics of cardiovascular https://doi.org/10.1126/science.aav9973
diseases: From single mutations to the whole genome. 13. Koblan LW, Doman JL, Wilson C, et al., 2018, Improving
Circulation, 116: 1714–1724. cytidine and adenine base editors by expression optimization
https://doi.org/10.1161/CIRCULATIONAHA.106.661751 and ancestral reconstruction. Nat Biotechnol, 36: 843–846.
2. Humphries SE. 2017, Common variants for cardiovascular https://doi.org/10.1038/nbt.4172
disease: Clinical utility confirmed. Circulation, 14. Huang S, Liao Z, Li X, et al., 2019, Developing ABEmax-NG
135: 2102–2105. with precise targeting and expanded editing scope to
https://doi.org/10.1161/CIRCULATIONAHA.117.027798 model pathogenic splice site mutations in vivo. iScience,
15: 640–648.
3. Zhuang X, Tian M, Li L, et al., 2022, Identification of
potential hub genes for the diagnosis and therapy of dilated https://doi.org/10.1016/j.isci.2019.05.008
cardiomyopathy with heart failure through bioinformatics 15. Richter MF, Zhao KT, Eton E, et al., 2020, Phage-assisted
analysis. GTM, 1: 104. evolution of an adenine base editor with improved
https://doi.org/10.36922/gtm.v1i1.104 Cas domain compatibility and activity. Nat Biotechnol,
38: 883–891.
4. Kalayinia S, Goodarzynejad H, Maleki M, et al., 2018, Next
generation sequencing applications for cardiovascular https://doi.org/10.1038/s41587-020-0453-z
disease. Ann Med, 50:91–109. 16. Gaudelli NM, Lam DK, Rees HA, et al., 2020, Directed
https://doi.org/10.1080/07853890.2017.1392595 evolution of adenine base editors with increased activity and
therapeutic application. Nat Biotechnol, 38: 892–900.
5. Jiang W, Marraffini LA. 2015, CRISPR-Cas: New tools for
genetic manipulations from bacterial immunity systems. https://doi.org/10.1038/s41587-020-0491-6
Annu Rev Microbiol, 69: 209–228. 17. Hu JH, Miller SM, Geurts MH, et al., 2018, Evolved Cas9
https://doi.org/10.1146/annurev-micro-091014-104441 variants with broad PAM compatibility and high DNA
specificity. Nature, 556: 57–63.
6. Marraffini LA. 2015, CRISPR-Cas immunity in prokaryotes.
Nature, 526: 55–61. https://doi.org/10.1038/nature26155
https://doi.org/10.1038/nature15386 18. Hsu PD, Scott DA, Weinstein JA, et al., 2013, DNA targeting
specificity of RNA-guided Cas9 nucleases. Nat Biotechnol,
7. Jinek M, Chylinski K, Fonfara I, et al., 2012, A programmable 31: 827–832.
dual-RNA-guided DNA endonuclease in adaptive bacterial
immunity. Science (New York, N.Y.), 337: 816–821. https://doi.org/10.1038/nbt.2647
https://doi.org/10.1126/science.1225829 19. Ran FA, Cong L, Yan WX, et al., 2015, In vivo genome editing
using Staphylococcus aureus Cas9. Nature, 520: 186–191.
8. Komor AC, Kim YB, Packer MS, et al., 2016, Programmable
editing of a target base in genomic DNA without double- https://doi.org/10.1038/nature14299
stranded DNA cleavage. Nature, 533: 420–424. 20. Jiang F, Doudna JA. 2017, CRISPR-Cas9 structures and
https://doi.org/10.1038/nature17946 mechanisms. Annu Rev Biophys, 46: 505–529.
9. Gaudelli NM, Komor AC, Rees HA, et al., 2017, https://doi.org/10.1146/annurev-biophys-062215-010822.
Programmable base editing of A•T to G•C in genomic DNA 21. Makarova KS, Wolf YI, Alkhnbashi OS, et al., 2015, An
without DNA cleavage. Nature, 551: 464–471. updated evolutionary classification of CRISPR-Cas systems.
https://doi.org/10.1038/nature24644 Nat Rev Microbiol, 13: 722–736.
10. Landrum MJ, Lee JM, Benson M, et al., 2016, ClinVar: Public https://doi.org/10.1038/nrmicro3569
archive of interpretations of clinically relevant variants. 22. Makarova KS, Wolf YI, Iranzo J, et al., 2020, Evolutionary
Nucleic Acids Res, 44: D862–D868.
classification of CRISPR-Cas systems: A burst of class 2 and
https://doi.org/10.1093/nar/gkv1222 derived variants. Nat Rev Microbiol, 18: 67–83.
Volume 2 Issue 1 (2023) 10 https://doi.org/10.36922/gtm.232

