Page 43 - GTM-2-4
P. 43

Global Translational Medicine                                      The research advances in HPV integration



               https://doi.org/10.1371/journal.ppat.1006211    22.  Jang MK, Shen K, McBride AA, 2014, Papillomavirus
                                                                  genomes associate with BRD4 to replicate at fragile sites in
            12.  Rusan M, Li YY, Hammerman PS, 2015, Genomic landscape
               of human papillomavirus-associated cancers.  Clin Cancer   the host genome. PLoS Pathog, 10: e1004117.
               Res, 21: 2009–2019.                                https://doi.org/10.1371/journal.ppat.1004117
               https://doi.org/10.1158/1078-0432.CCR-14-1101   23.  Sakakibara N, Mitra R, McBride AA, 2011, The
                                                                  papillomavirus E1 helicase activates a cellular DNA damage
            13.  Tang KW, Alaei-Mahabadi B, Samuelsson T,  et al., 2013,
               The landscape of viral expression and host gene fusion and   response in viral replication foci. J Virol, 85: 8981–8995.
               adaptation in human cancer. Nat Commun, 4: 2513.      https://doi.org/10.1128/JVI.00541-11
               https://doi.org/10.1038/ncomms3513              24.  Chen Wongworawat Y, Filippova M, Williams VM, et al.,
            14.  Schrank TP, Kim S, Rehmani H,  et al., 2022, Direct   2016, Chronic oxidative stress increases the integration
               comparison of HPV16 viral genomic integration, copy loss,   frequency of foreign DNA and human papillomavirus 16 in
               and structural variants in oropharyngeal and uterine cervical   human keratinocytes. Am J Cancer Res, 6: 764–780.
               cancers  reveal  distinct  relationships  to  E2  disruption  and   25.  Akagi K, Li J, Broutian TR,  et  al., 2014, Genome-wide
               somatic alteration. Cancers (Basel), 14: 4488.     analysis of HPV integration in human cancers reveals
               https://doi.org/10.3390/cancers14184488            recurrent, focal genomic instability.  Genome Res, 24: 
                                                                  185–199.
            15.  Symer  DE,  Akagi  K,  Geiger  HM,  et al.,  2022,  Diverse
               tumorigenic consequences of human papillomavirus      https://doi.org/10.1101/gr.164806.113
               integration in primary oropharyngeal cancers. Genome Res,   26.  Schmitz M, Driesch C, Jansen L, et al., 2012, Non-random
               32: 55–70.                                         integration of the HPV genome in cervical cancer.  PLoS
                https://doi.org/10.1101/gr.275911.121             One, 7: e39632.
            16.  Christiansen IK, Sandve GK, Schmitz M,  et al., 2015,      https://doi.org/10.1371/journal.pone.0039632
               Transcriptionally active regions are the preferred targets for   27.  Lee JA, Carvalho CM, Lupski JR, 2007, A DNA replication
               chromosomal HPV integration in cervical carcinogenesis.   mechanism for generating nonrecurrent rearrangements
               PLoS One, 10: e0119566.                            associated with genomic disorders. Cell, 131: 1235–1247.
               https://doi.org/10.1371/journal.pone.0119566       https://doi.org/10.1016/j.cell.2007.11.037
            17.  Hu Z, Zhu D, Wang W, et al., 2015, Genome-wide profiling   28.  Peter M, Rosty C, Couturier J, et al., 2006, MYC activation
               of HPV integration in cervical cancer identifies clustered   associated with the integration of HPV DNA at the MYC
               genomic hot spots and a potential microhomology-mediated   locus in genital tumors. Oncogene, 25: 5985–5993.
               integration mechanism. Nat Genet, 47: 158–163.
                                                                  https://doi.org/10.1038/sj.onc.1209625
               https://doi.org/10.1038/ng.3178
                                                               29.  Pyeon D, Newton MA, Lambert PF,  et al., 2007,
            18.  Pett M, Coleman N, 2007, Integration of high-risk human   Fundamental differences in cell cycle deregulation in
               papillomavirus:  A  key  event  in  cervical  carcinogenesis?  J   human papillomavirus-positive and human papillomavirus-
               Pathol, 212: 356–367.                              negative head/neck and cervical cancers.  Cancer Res,
               https://doi.org/10.1002/path.2192                  67: 4605–4619.
            19.  Parfenov M, Pedamallu CS, Gehlenborg N,  et al., 2014,      https://doi.org/10.1158/0008-5472.CAN-06-3619
               Characterization of HPV and host genome interactions in   30.  Warburton A, Redmond CJ, Dooley KE, et al., 2018, HPV
               primary head and neck cancers. Proc Natl Acad Sci U S A,   integration hijacks and multimerizes a cellular enhancer
               111: 15544–15549.                                  to generate a viral-cellular super-enhancer that drives high
               https://doi.org/10.1073/pnas.1416074111            viral oncogene expression. PLoS Genet, 14: e1007179.
            20.  Kondo S, Wakae K, Wakisaka N, et al., 2017, APOBEC3A      https://doi.org/10.1371/journal.pgen.1007179
               associates with human papillomavirus genome integration   31.  Derbie A, Mekonnen D, Woldeamanuel Y, et al., 2020, HPV
               in oropharyngeal cancers. Oncogene, 36: 1687–1697.   E6/E7 mRNA test for the detection of high grade cervical
               https://doi.org/10.1038/onc.2016.335               intraepithelial neoplasia (CIN2+): A  systematic review.
                                                                  Infect Agent Cancer, 15: 9.
            21.  Balaji H, Demers I, Wuerdemann N,  et al., 2021, Causes
               and consequences of HPV integration in head and neck      https://doi.org/10.1186/s13027-020-0278-x
               squamous cell carcinomas: State of the art. Cancers (Basel),   32.  Leung TW, Liu SS, Leung RCY,  et al., 2015, HPV 16 E2
               13: 4089.
                                                                  binding sites 1 and 2  become more methylated than E2
               https://doi.org/10.3390/cancers13164089            binding site 4 during cervical carcinogenesis. J Med Virol,


            Volume 2 Issue 4 (2023)                         17                       https://doi.org/10.36922/gtm.2034
   38   39   40   41   42   43   44   45   46   47   48