Page 31 - GTM-3-4
P. 31

Global Translational Medicine                                    Metabolic dysfunction in vascular senescence



            11.  Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms   23.  Morrison SJ, Spradling AC. Stem cells and niches:
               and consequences of endothelial cell senescence.  Nat Rev   Mechanisms that promote stem cell maintenance throughout
               Cardiol. 2023;20(1):38-51.                         life. Cell. 2008;132(4):598-611.
               doi: 10.1038/s41569-022-00739-0                    doi: 10.1016/j.cell.2008.01.038
            12.  Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat   24.  Neves J, Sousa-Victor P, Jasper H. Rejuvenating strategies
               Rev Dis Primers. 2019;5(1):56.                     for stem cell-based therapies in aging.  Cell Stem Cell.
               doi: 10.1038/s41572-019-0106-z                     2017;20(2):161-175.
            13.  Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of      doi: 10.1016/j.stem.2017.01.008
               cellular senescence. Trends Cell Biol. 2018;28(6):436-453.  25.  Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms
               doi: 10.1016/j.tcb.2018.02.001                     of longevity and aging. Cell. 2016;166(4):822-839.
            14.  Liu M, Gomez D. Smooth muscle cell phenotypic diversity.      doi: 10.1016/j.cell.2016.07.050
               Arterioscler Thromb Vasc Biol. 2019;39(9):1715-1723.  26.  Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact
               doi: 10.1161/atvbaha.119.312131                    of ROS signaling. Development. 2014;141(22):4206-4218.
            15.  Durham  AL,  Speer  MY,  Scatena  M,  Giachelli  CM,      doi: 10.1242/dev.107086
               Shanahan   CM. Role of smooth muscle cells in vascular   27.  Lourida KG, Louridas GE. Epigenetic perspective on
               calcification: Implications in atherosclerosis and arterial   atherosclerotic cardiovascular diseases: The holistic
               stiffness. Cardiovasc Res. 2018;114(4):590-600.    principle of systems biology and epigenetic reasoning. Glob
               doi: 10.1093/cvr/cvy010                            Transl Med. 2023;2(4):1868.
            16.  Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular      doi: 10.36922/gtm.1868
               smooth muscle cell phenotype switching contributes to   28.  Chakravarti D, LaBella KA, DePinho RA. Telomeres: History,
               vascular disease. Cell Commun Signal. 2022;20(1):180.  health, and hallmarks of aging. Cell. 2021;184(2):306-322.
               doi: 10.1186/s12964-022-00993-2                    doi: 10.1016/j.cell.2020.12.028
            17.  Zhang L, Xu Z, Wu Y, Liao J, Zeng F, Shi L. Akt/eNOS   29.  Bao H, Cao J, Chen M, et al. Biomarkers of aging. Sci China
               and MAPK signaling pathways mediated the phenotypic   Life Sci. 2023;66(5):893-1066.
               switching of thoracic aorta vascular smooth muscle cells in
               aging/hypertensive rats. Physiol Res. 2018;67(4):543-553.     doi: 10.1007/s11427-023-2305-0
               doi: 10.33549/physiolres.933779                 30.  O’Callaghan C, Vassilopoulos A. Sirtuins at the crossroads of
                                                                  stemness, aging, and cancer. Aging Cell. 2017;16(6):1208-1218.
            18.  Xu M, Wei X, Wang J, et al. The NRF2/ID2 axis in vascular
               smooth  muscle  cells:  Novel  insights  into  the  interplay      doi: 10.1111/acel.12685
               between vascular calcification and aging. Aging Dis. 2024.  31.  Zhang HN, Dai Y, Zhang CH, et al. Sirtuins family as a target
               doi: 10.14336/ad.2024.0075                         in endothelial cell dysfunction: Implications for vascular
                                                                  ageing. Biogerontology. 2020;21(5):495-516.
            19.  Wang H, Fu H, Zhu R,  et al. BRD4 contributes to LPS-
               induced macrophage senescence and promotes progression      doi: 10.1007/s10522-020-09873-z
               of  atherosclerosis-associated lipid  uptake.  Aging  (Albany   32.  Luna A, Aladjem MI, Kohn KW. SIRT1/PARP1 crosstalk:
               NY). 2020;12(10):9240-9259.                        Connecting DNA damage and metabolism. Genome Integr.
               doi: 10.18632/aging.103200                         2013;4(1):6.
            20.  Abe JI, Imanishi M, Li S, et al. An ERK5-NRF2 axis mediates      doi: 10.1186/2041-9414-4-6
               senescence-associated stemness and atherosclerosis.  Circ   33.  McReynolds MR, Chellappa K, Baur JA. Age-related NAD
                                                                                                             +
               Res. 2023;133(1):25-44.                            decline. Exp Gerontol. 2020;134:110888.
               doi: 10.1161/circresaha.122.322017                 doi: 10.1016/j.exger.2020.110888
            21.  Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van   34.  Vaidya H, Jeong HS, Keith K, et al. DNA methylation entropy
               Deursen JM. Senescent intimal foam cells are deleterious at all   as a measure of stem cell replication and aging. Genome Biol.
               stages of atherosclerosis. Science. 2016;354(6311):472-477.  2023;24(1):27.
               doi: 10.1126/science.aaf6659                       doi: 10.1186/s13059-023-02866-4
            22.  Wang L, Hong W, Zhu H, et al. Macrophage senescence in   35.  Bi S, Jiang X, Ji Q,  et al. The sirtuin-associated human
               health and diseases. Acta Pharm Sin B. 2024;14(4):1508-1524.
                                                                  senescence program converges on the activation of placenta-
               doi: 10.1016/j.apsb.2024.01.008                    specific gene PAPPA. Dev Cell. 2024;59(8):991-1009.e12.


            Volume 3 Issue 4 (2024)                         11                              doi: 10.36922/gtm.4619
   26   27   28   29   30   31   32   33   34   35   36