Page 96 - IJAMD-1-2
P. 96
International Journal of AI for
Materials and Design
AMTransformer for process dynamics
Shaping. Data Brief. 2016;7:697-703. Learning for Real-Time Melt Pool Classification in Additive
Manufacturing. United States: IEEE; 2019. p. 640-647.
doi: 10.1016/j.dib.2016.02.084
13. Mitchell JA, Ivanoff TA, Dagel D, Madison JD, Jared B. doi: 10.1109/COASE.2019.8843291
Linking pyrometry to porosity in additively manufactured 24. Zhang Y, Soon HG, Ye D, Fuh JYH, Zhu K. Powder-
metals. Addit Manuf. 2020;31:100946. bed fusion process monitoring by machine vision with
doi: 10.1016/j.addma.2019.100946 hybrid convolutional neural networks. IEEE Trans Ind Inf.
2019;16(9):5769-5779.
14. Fathizadan S, Ju F, Lu Y. Deep representation learning for
process variation management in laser powder bed fusion. doi: 10.1109/TII.2019.2956078
Addit Manuf. 2021;42:101961. 25. Larsen S, Hooper PA. Deep semi-supervised learning of
doi: 10.1016/j.addma.2021.101961 dynamics for anomaly detection in laser powder bed fusion.
J Intell Manuf. 2022;33(2):457-471.
15. Yang Z, Lu Y, Yeung H, Krishnamurty S. From scan strategy
to melt pool prediction: A neighboring-effect modeling doi: 10.1007/s10845-021-01842-8
method. J Comput Inf Sci Eng. 2020;20(5):051001. 26. Fernandez-Zelaia P, Dryepondt SN, Ziabari AK, Kirka MM.
doi: 10.1115/1.4046335 Self-supervised learning of spatiotemporal thermal
signatures in additive manufacturing using reduced order
16. Zhang Z, Sahu CK, Singh SK, Rai R, Yang Z, Lu Y. Machine physics models and transformers. Comput Mater Sci.
learning based prediction of melt pool morphology in a
laser-based powder bed fusion additive manufacturing 2024;232:112603.
process. Int J Prod Res. 2024;62(5):1803-1817. doi: 10.1016/j.commatsci.2023.112603
doi: 10.1080/00207543.2023.2201860 27. Guirguis D, Tucker C, Beuth J. Accelerating process
development for 3D printing of new metal alloys. Nat
17. Tempelman JR, Wachtor AJ, Flynn EB, et al. Detection of
keyhole pore formations in laser powder-bed fusion using Commun. 2024;15(1):1-12.
acoustic process monitoring measurements. Addit Manuf. doi: 10.1038/s41467-024-44783-5
2022;55:102735.
28. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
doi: 10.1016/j.addma.2022.102735 need. Adv Neural Inf Process Syst. 2017;30:5998-6008.
18. Kononenko DY, Nikonova V, Seleznev M, van den Brink J, doi: 10.48550/arXiv.1706.03762
Chernyavsky D. An in situ crack detection approach in
additive manufacturing based on acoustic emission and 29. Koopman BO. Hamiltonian systems and transformation in
machine learning. Addit Manuf Lett. 2023;5:100130. Hilbert space. Proc Natl Acad Sci. 1931;17(5):315-318.
doi: 10.1016/j.addlet.2023.100130 30. Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson
DS. Spectral analysis of nonlinear flows. J Fluid Mech.
19. Lough CS, Escano LI, Qu M, et al. In-situ optical emission 2009;641:115-127.
spectroscopy of selective laser melting. J Manuf Process.
2020;53:336-341. doi: 10.1017/S0022112009992059
20. Montazeri M, Nassar AR, Dunbar AJ, Rao P. In-process 31. Brunton SL, Kutz JN. Data-Driven Science and Engineering:
monitoring of porosity in additive manufacturing Machine Learning, Dynamical Systems, and Control.
using optical emission spectroscopy. IISE Trans. Cambridge, UK: Cambridge University Press; 2019.
2020;52(5):500-515. 32. Geneva N, Zabaras N. Transformers for modeling physical
doi: 10.1080/24725854.2019.1659525 systems. Neural Netw. 2022;146:272-289.
21. Liu J, Ye J, Silva Izquierdo D, Vinel A, Shamsaei N, doi: 10.1016/j.neunet.2021.11.022
Shao S. A review of machine learning techniques for 33. Mezić I. Analysis of fluid flows via spectral properties of the
process and performance optimization in laser beam Koopman operator. Annu Rev Fluid Mech. 2013;45:357-378.
powder bed fusion additive manufacturing. J Intell Manuf.
2023;34(8):3249-3275. doi: 10.1146/annurev-fluid-011212-140652
doi: 10.1007/s10845-022-02012-0 34. Schmid PJ. Dynamic mode decomposition and its variants.
Annu Rev Fluid Mech. 2022;54:225-254.
22. Cai Y, Xiong J, Chen H, Zhang G. A review of in-situ
monitoring and process control system in metal-based laser doi: 10.1146/annurev-fluid-030121-015835
additive manufacturing. J Manuf Syst. 2023;70:309-326. 35. Schmid PJ. Dynamic mode decomposition of numerical and
doi: 10.1016/j.jmsy.2023.07.018 experimental data. J Fluid Mech. 2010;656:5-28.
23. Yang Z, Lu Y, Yeung H, Krishnamurty S. Investigation of Deep doi: 10.1017/S0022112010001217
Volume 1 Issue 2 (2024) 90 doi: 10.36922/ijamd.3919

