Page 96 - IJAMD-1-2
P. 96

International Journal of AI for
            Materials and Design
                                                                                   AMTransformer for process dynamics


               Shaping. Data Brief. 2016;7:697-703.               Learning for Real-Time Melt Pool Classification in Additive
                                                                  Manufacturing. United States: IEEE; 2019. p. 640-647.
               doi: 10.1016/j.dib.2016.02.084
            13.  Mitchell JA, Ivanoff TA, Dagel D, Madison JD, Jared B.      doi: 10.1109/COASE.2019.8843291
               Linking pyrometry to porosity in additively manufactured   24.  Zhang Y, Soon HG, Ye D, Fuh JYH, Zhu K. Powder-
               metals. Addit Manuf. 2020;31:100946.               bed fusion process monitoring by machine vision with
               doi: 10.1016/j.addma.2019.100946                   hybrid convolutional neural networks. IEEE Trans Ind Inf.
                                                                  2019;16(9):5769-5779.
            14.  Fathizadan S, Ju F, Lu Y. Deep representation learning for
               process variation management in laser powder bed fusion.      doi: 10.1109/TII.2019.2956078
               Addit Manuf. 2021;42:101961.                    25.  Larsen S, Hooper PA. Deep semi-supervised learning of
               doi: 10.1016/j.addma.2021.101961                   dynamics for anomaly detection in laser powder bed fusion.
                                                                  J Intell Manuf. 2022;33(2):457-471.
            15.  Yang Z, Lu Y, Yeung H, Krishnamurty S. From scan strategy
               to melt pool prediction: A  neighboring-effect modeling      doi: 10.1007/s10845-021-01842-8
               method. J Comput Inf Sci Eng. 2020;20(5):051001.  26.  Fernandez-Zelaia P, Dryepondt SN, Ziabari AK, Kirka MM.
               doi: 10.1115/1.4046335                             Self-supervised learning of spatiotemporal thermal
                                                                  signatures in additive manufacturing using reduced order
            16.  Zhang Z, Sahu CK, Singh SK, Rai R, Yang Z, Lu Y. Machine   physics  models  and  transformers.  Comput Mater Sci.
               learning  based  prediction of  melt  pool  morphology  in  a
               laser-based powder bed fusion additive manufacturing   2024;232:112603.
               process. Int J Prod Res. 2024;62(5):1803-1817.     doi: 10.1016/j.commatsci.2023.112603
               doi: 10.1080/00207543.2023.2201860              27.  Guirguis D, Tucker C, Beuth J. Accelerating process
                                                                  development for 3D printing of new metal alloys.  Nat
            17.  Tempelman JR, Wachtor AJ, Flynn EB, et al. Detection of
               keyhole pore formations in laser powder-bed fusion using   Commun. 2024;15(1):1-12.
               acoustic process monitoring measurements.  Addit Manuf.      doi: 10.1038/s41467-024-44783-5
               2022;55:102735.
                                                               28.  Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
               doi: 10.1016/j.addma.2022.102735                   need. Adv Neural Inf Process Syst. 2017;30:5998-6008.
            18.  Kononenko DY, Nikonova V, Seleznev M, van den Brink J,      doi: 10.48550/arXiv.1706.03762
               Chernyavsky D. An  in situ  crack detection approach in
               additive manufacturing based on acoustic emission and   29.  Koopman BO. Hamiltonian systems and transformation in
               machine learning. Addit Manuf Lett. 2023;5:100130.  Hilbert space. Proc Natl Acad Sci. 1931;17(5):315-318.
               doi: 10.1016/j.addlet.2023.100130               30.  Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson
                                                                  DS. Spectral analysis of nonlinear flows.  J  Fluid Mech.
            19.  Lough CS, Escano LI, Qu M, et al. In-situ optical emission   2009;641:115-127.
               spectroscopy of selective laser melting.  J  Manuf Process.
               2020;53:336-341.                                   doi: 10.1017/S0022112009992059
            20.  Montazeri M, Nassar AR, Dunbar AJ, Rao P. In-process   31.  Brunton SL, Kutz JN. Data-Driven Science and Engineering:
               monitoring  of  porosity  in  additive  manufacturing   Machine Learning, Dynamical Systems, and Control.
               using optical emission spectroscopy.  IISE Trans.   Cambridge, UK: Cambridge University Press; 2019.
               2020;52(5):500-515.                             32.  Geneva N, Zabaras N. Transformers for modeling physical
               doi: 10.1080/24725854.2019.1659525                 systems. Neural Netw. 2022;146:272-289.
            21.  Liu J, Ye J, Silva Izquierdo D, Vinel A, Shamsaei N,      doi: 10.1016/j.neunet.2021.11.022
               Shao  S. A  review of machine learning techniques for   33.  Mezić I. Analysis of fluid flows via spectral properties of the
               process and performance optimization in laser beam   Koopman operator. Annu Rev Fluid Mech. 2013;45:357-378.
               powder bed fusion additive manufacturing. J Intell Manuf.
               2023;34(8):3249-3275.                              doi: 10.1146/annurev-fluid-011212-140652
               doi: 10.1007/s10845-022-02012-0                 34.  Schmid PJ. Dynamic mode decomposition and its variants.
                                                                  Annu Rev Fluid Mech. 2022;54:225-254.
            22.  Cai Y, Xiong J, Chen H, Zhang G. A  review of  in-situ
               monitoring and process control system in metal-based laser      doi: 10.1146/annurev-fluid-030121-015835
               additive manufacturing. J Manuf Syst. 2023;70:309-326.  35.  Schmid PJ. Dynamic mode decomposition of numerical and
               doi: 10.1016/j.jmsy.2023.07.018                    experimental data. J Fluid Mech. 2010;656:5-28.
            23.  Yang Z, Lu Y, Yeung H, Krishnamurty S. Investigation of Deep      doi: 10.1017/S0022112010001217


            Volume 1 Issue 2 (2024)                         90                             doi: 10.36922/ijamd.3919
   91   92   93   94   95   96   97   98   99   100