Page 97 - IJAMD-1-2
P. 97
International Journal of AI for
Materials and Design
AMTransformer for process dynamics
36. Radford A, Narasimhan K, Salimans T, Sutskever I. 18. doi: 10.6028/jres.125.027
Improving language understanding by generative pre- 40. Glorot X, Bordes A, Bengio Y. Deep Sparse Rectifier Neural
training. 2018, OpenAI Blog. Available from: https:// Networks. In: JMLR Workshop and Conference Proceedings;
openai-assets.s3.amazonaws.com/research-covers/ 2011. p. 315-323.
languageunsupervised/language_understanding_paper.pdf
[Last accessed: August 29, 2024]. 41. Glorot X, Bordes A, Bengio Y. Domain Adaptation for Large-
Scale Sentiment Classification: A Deep Learning Approach.
37. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. th
Language models are unsupervised multitask learners. Open In: Proceedings of the 28 International Conference on
AI Blog. 2019;1(8):9. Machine Learning; 2011. p. 513-520.
42. Hendrycks D, Gimpel K. Gaussian error linear units (gelus).
38. Wolf T, Debut L, Sanh V, et al. Hugging face’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv preprint arXiv:160608415. 2016.
arXiv:191003771. 2019. doi: 10.48550/arXiv.1606.08415
doi: 10.48550/arXiv.1910.03771 43. Wang Z, Simoncelli EP, Bovik AC. Multiscale Structural
Similarity for Image Quality Assessment. IEEE: IEEE; 2003.
39. Lane B, Yeung H. Process monitoring dataset from the
additive manufacturing metrology testbed (ammt): p. 1398-1402.
Overhang part x4. J Res Natl Inst Stand Technol. 2020;125:1- doi: 10.1109/ACSSC.2003.1292216
Volume 1 Issue 2 (2024) 91 doi: 10.36922/ijamd.3919

