Page 70 - IJAMD-1-3
P. 70

International Journal of AI for
            Materials and Design
                                                            Phase change materials and digital twin technology in thermal energy


               Energy Rev. 134 (2020) 110340/RSER-D-20-00822]. Renew   76.  Lu X, Huang J, Wong WY, Qu JP. A novel bio-based
               Sustain Energy Rev. 2021;139:110642.               polyurethane/wood powder  composite as shape-stable
                                                                  phase change material with high relative enthalpy efficiency
               doi: 10.1016/j.rser.2020.110642
                                                                  for solar thermal energy storage. Solar Energy Mater Solar
            66.  Mehling H, Brütting M, Haussmann T. PCM products   Cells. 2019;200:109987.
               and their fields of application-an overview of the state in
               2020/2021. J Energy Storage. 2022;51:104354.       doi: 10.1016/j.solmat.2019.109987
                                                               77.  Huang J, Su J, Weng M, et al. An innovative phase change
               doi: 10.1016/j.est.2022.104354
                                                                  composite with high thermal conductivity and sensitive
            67.  Ning M, Jingyu H, Dongmei P, Shengchun L, Mengjie  S.   light response rate for thermal energy storage. Solar Energy
               Investigations on thermal environment in residential   Mater Solar Cells. 2022;245:111872.
               buildings with PCM embedded in external wall.  Energy
               Procedia. 2017;142:1888-1895.                      doi: 10.1016/j.solmat.2022.111872
               doi: 10.1016/j.egypro.2017.12.387               78.  Rudra Murthy BV, Gumtapure V. Thermo-physical analysis
                                                                  of natural shellac wax as novel bio-phase change material
            68.  Wang SM, Matiašovský P, Mihálka P, Lai CM. Experimental   for thermal energy storage applications.  J Energy Storage.
               investigation of the daily thermal performance of a mPCM   2020;29:101390.
               honeycomb wallboard. Energy Build. 2018;159:419-425.
                                                                  doi: 10.1016/j.est.2020.101390
               doi: 10.1016/j.enbuild.2017.10.080
                                                               79.  Lu X, Huang J, Kang B, Yuan T, Qu J ping. Bio-based poly
            69.  Lee KO, Medina MA, Sun X, Jin X. Thermal performance   (lactic  acid)/high-density  polyethylene  blends  as  shape-
               of Phase Change Materials (PCM)-enhanced cellulose   stabilized phase change material for thermal energy
               insulation in passive solar residential building walls. Solar   storage applications.  Solar Energy Mater Solar Cells.
               Energy. 2018;163:113-121.                          2019;192:170-178.
               doi: 10.1016/j.solener.2018.01.086                 doi: 10.1016/j.solmat.2018.12.036
            70.  Yao C, Kong X, Li Y, Du Y, Qi C. Numerical and experimental   80.  Sam MN, Caggiano A, Mankel C, Koenders E. A comparative
               research of cold storage for a novel expanded perlite-based   study on the thermal energy storage performance of bio-
               shape-stabilized  phase change  material  wallboard  used  in   based and paraffin-based PCMs using DSC procedures.
               building. Energy Convers Manag. 2018;155:20-31.    Materials. 2020;13(7):1705.

               doi: 10.1016/j.enconman.2017.10.052                doi: 10.3390/ma13071705
            71.  Biswas K, Lu J, Soroushian P, Shrestha S. Combined   81.  Liu L, Fan X, Zhang Y, et al. Novel bio-based phase change
               experimental and numerical evaluation of a prototype nano-  materials with high enthalpy for thermal energy storage.
               PCM enhanced wallboard. Appl Energy. 2014;131:517-529.  Appl Energy. 2020;268:114979.
               doi: 10.1016/j.apenergy.2014.02.047                doi: 10.1016/j.apenergy.2020.114979
            72.  Kharbouch Y, Mimet A, El Ganaoui M. Thermal impact   82.  Seo H, Yun WS. Digital twin-based assessment framework
               study of a bio-based wall coupled with an inner PCM layer.   for  energy savings in  university  classroom  lighting.
               Energy Procedia. 2017;139:10-15.                   Buildings. 2022;12(5):544.
               doi: 10.1016/j.egypro.2017.11.165                  doi: 10.3390/buildings12050544
            73.  Li Y, Liu S, Lu J. Effects of various parameters of a PCM on   83.  Tan Y, Chen P, Shou W, Sadick AM. Digital Twin-driven
               thermal performance of a solar chimney. Appl Therm Eng.   approach to improving energy efficiency of indoor lighting
               2017;127:1119-1131.                                based on computer vision and dynamic BIM. Energy Build.
               doi: 10.1016/j.applthermaleng.2017.08.087          2022;270:112271.
            74.  Agostinelli S, Cumo F, Guidi G, Tomazzoli C. Cyber-     doi: 10.1016/j.enbuild.2022.112271
               physical systems improving building energy management:   84.  Qian Y, Leng J, Chun Q, Wang H, Zhou K. A year-long field
               Digital twin and artificial intelligence.  Energies (Basel).   investigation on the spatio-temporal variations of occupant’s
               2021;14(8):2338.                                   thermal comfort in Chinese traditional courtyard dwellings.
               doi: 10.3390/en14082338                            Build Environ. 2023;228:109836.
            75.  Zou Y, Li R, Zhang X, Song J. Five-dimensional model      doi: 10.1016/j.buildenv.2022.109836
               research of complex product assembly driven by digital   85.  Deng M, Wang X, Li D, Menassa CC. Digital ID framework
               twin. Int J Wirel Mob Comput. 2021;21(3):198-206.  for human-centric monitoring and control of smart
               doi: 10.1504/IJWMC.2021.120883                     buildings. Build Simul. 2022;15(10):1709-1728.


            Volume 1 Issue 3 (2024)                         64                             doi: 10.36922/ijamd.4696
   65   66   67   68   69   70   71   72   73   74   75