Page 78 - IJAMD-2-1
P. 78
International Journal of AI for
Materials and Design
Fatigue life prediction via contrastive learning
doi: 10.1016/j.neucom.2024.128645 2017. p. 61-65. Available from: https://ieeexplore.ieee.org/
abstract/document/7952118 [Last accessed on 2025 Jan 08].
59. Gutmann M, Hyvärinen A. Noise-contrastive estimation:
A new estimation principle for unnormalized statistical 64. Wu S, Wang Y, Jiang Y, Zhang Q, Liu J. CRATI: Contrastive
models. In: Proceedings of the Thirteenth International representation-based multimodal sound event localization
Conference on Artificial Intelligence and Statistics. JMLR and detection. Knowl Based Syst. 2024;305:112692.
Workshop and Conference Proceedings; 2010. p. 297-304.
doi: 10.1016/j.knosys.2024.112692
60. Caron M, Misra I, Mairal J, Goyal P, Bojanowski P, Joulin A.
Unsupervised learning of visual features by contrasting 65. Chen T, Kornblith S, Norouzi M, Hinton G. A simple
cluster assignments. In: Proceedings of the 34 International framework for contrastive learning of visual representations.
th
th
Conference on Neural Information Processing Systems. Red In: Proceedings of the 37 International Conference on
Hook, NY, USA: Curran Associates Inc., 2020. p. 9912-9924. Machine Learning. Vol. 119. JMLR; 2020.
61. Reimers N, Gurevych I. Sentence-BERT: Sentence 66. Guo Q, Wang C, Xiao D, Huang Q. A lightweight open-
Embeddings using Siamese BERT-Networks. In: Proceedings world pest image classifier using ResNet8-based matching
of the 2019 Conference on Empirical Methods in Natural network and NT-Xent loss function. Expert Syst Appl.
Language Processing and the 9 International Joint Conference 2024;237:121395.
th
on Natural Language Processing (EMNLP-IJCNLP). Hong doi: 10.1016/j.eswa.2023.121395
Kong, China: Association for Computational Linguistics;
2019. p. 3982-3992. 67. Kim T, Yoo KM, Lee SG. Self-Guided Contrastive Learning
for BERT Sentence Representations. In: Proceedings of the
62. Rusak E, Reizinger P, Juhos A, Bringmann O, Zimmermann 59 Annual Meeting of the Association for Computational
th
RS, Brendel W. InfoNCE: Identifying the Gap between Theory Linguistics and the 11 International Joint Conference on
th
and Practice. arXiv; 2024. Available from: https://arxiv.org/ Natural Language Processing (Volume 1: Long Papers); 2021.
abs/2407.00143 [Last accessed on 2025 Jan 08].
p. 2528-2540.
63. Luo Y, Chen Z, Hershey JR, Le Roux J, Mesgarani N. Deep
clustering and conventional networks for music separation: doi: 10.18653/v1/2021.acl-long.197
Stronger together. In: 2017 IEEE International Conference 68. van der Maaten L, Hinton G. Visualizing data using t-SNE.
on Acoustics, Speech and Signal Processing (ICASSP); J Mach Learn Res. 2008;9(86):2579-2605.
Volume 2 Issue 1 (2025) 72 doi: 10.36922/IJAMD025040004

