Page 75 - IJAMD-2-1
P. 75

International Journal of AI for
            Materials and Design
                                                                             Fatigue life prediction via contrastive learning


               principles, thereby improving model interpretability.      doi: 10.1016/j.ijmecsci.2019.105190
               In  addition,  extending  this  framework  to materials   4.   Liang Q, Peng C, Li X. A multi-state Semi-Markov model
               with heterogeneous microstructures can help evaluate   for nuclear power plants piping systems subject to fatigue
               its performance under different fatigue mechanisms   damage and random shocks under dynamic environments.
               and further validate its generalization capability.  Int J Fatigue. 2023;168:107448.

            Acknowledgments                                       doi: 10.1016/j.ijfatigue.2022.107448
                                                               5.   Yu Z, Sun X, Xing R, Chen X. Unified prediction of
            None.                                                 uniaxial ratcheting deformation at elevated temperatures
            Funding                                               with physics-informed multimodal network.  Int J Plast.
                                                                  2025;187:104275.
            The authors gratefully acknowledge financial support for      doi: 10.1016/j.ijplas.2025.104275
            this work from the National Natural Science Foundation
            of China (No. 12302098).                           6.   Maniar Y, Konstantin G, Sharma A, et al. Solder joint lifetime
                                                                  modeling under random vibrational load collectives. JOM.
            Conflict of interest                                  2020;72(2):898-905.
                                                                  doi: 10.1007/s11837-019-03947-1
            The authors declared that they have no known competing
            financial interests or personal relationships that could have   7.   Wijker JJ. Spacecraft Structures. Berlin: Springer Science &
            influenced the work reported in this paper.           Business Media; 2008.
                                                               8.   Min KD, Lee BS, Kim SJ. Effects of oxide on fatigue
            Author contributions                                  crack growth behaviour of type  347 stainless steel in
            Conceptualization: Xingyue Sun                        PWR water conditions.  Fatigue Fract Eng Mater Struct.
                                                                  2015;38(8):960-969.
            Formal analysis: Ziyu Cui
            Investigation: Xingyue Sun, Ziyu Cui                  doi: 10.1111/ffe.12290
            Methodology: Xingyue Sun                           9.   Agency IAE. Assessment and Management of Ageing of Major
            Writing – original draft: Ziyu Cui                    Nuclear Power Plant Components Important to Safety: PWR
            Writing – review & editing: Xingyue Sun, Xu Chen      Pressure, IAEA-TECDOC-1556, IAEA, Vienna; 2007.

            Ethics approval and consent to participate         10.  Guo C, Yu D, Sun X, et al. Fatigue failure mechanism and life
                                                                  prediction of a cast duplex stainless steel after thermal aging.
            Not applicable.                                       Int J Fatigue. 2021;146:106161.

            Consent for publication                               doi: 10.1016/j.ijfatigue.2021.106161
                                                               11.  Kishore P, Mondal A, Trivedi A,  et al. A  microstructure
            Not applicable.                                       sensitive machine learning-based approach for predicting
            Availability of data                                  fatigue life of additively manufactured parts. Int J Fatigue.
                                                                  2025;192:108724.
            The data are available from the corresponding author upon      doi: 10.1016/j.ijfatigue.2024.108724
            reasonable request.
                                                               12.  Yang J, Kang G, Liu Y, Kan Q. A novel method of multiaxial
            References                                            fatigue life prediction based on deep learning. Int J Fatigue.
                                                                  2021;151:106356.
            1.   Towashiraporn P, Gall K, Subbarayan G, et al. Power cycling
               thermal fatigue of Sn-Pb solder joints on a chip scale      doi: 10.1016/j.ijfatigue.2021.106356
               package. Int J Fatigue. 2024;26(5):497-510.     13.  Zhang M, Sun CN, Zhang X, et al. High cycle fatigue life
                                                                  prediction of laser additive manufactured stainless steel:
               doi: 10.1016/j.ijfatigue.2003.09.004
                                                                  A machine learning approach. Int J Fatigue. 2019;128:105194.
            2.   Donnerbauer K, Bill T, Starke P, et al. Fatigue life evaluation
               of metastable austenitic stainless steel AISI347 based on      doi: 10.1016/j.ijfatigue.2019.105194
               nondestructive testing methods for different environmental   14.  Li  J,  Yang  Z, Qian  G,  Berto  F.  Machine  learning based
               conditions. Int J Fatigue. 2024;179:108056.        very-high-cycle fatigue life prediction of Ti-6Al-4V
                                                                  alloy fabricated by selective laser melting.  Int J Fatigue.
               doi: 10.1016/j.ijfatigue.2023.108056
                                                                  2022;158:106764.
            3.   Zhao B, Xie L, Song J, et al. Fatigue life prediction of aero-
               engine compressor disk based on a new stress field intensity      doi: 10.1016/j.ijfatigue.2022.106764
               approach. Int J Mech Sci. 2020;165:105190.      15.  Jing G,  Ma T, Wang Z,  et al. Physical hierarchical neural


            Volume 2 Issue 1 (2025)                         69                        doi: 10.36922/IJAMD025040004
   70   71   72   73   74   75   76   77   78   79   80