Page 77 - IJAMD-2-1
P. 77

International Journal of AI for
            Materials and Design
                                                                             Fatigue life prediction via contrastive learning


               component. Int J Mech Sci. 2017;124-125:48-58.     doi: 10.16383/j.aas.c220421
               doi: 10.1016/j.ijmecsci.2017.03.002             48.  Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F.
            37.  Yang S, Hu W, Meng Q, Zhao B. A new continuum damage   A  survey  on  contrastive  self-supervised  learning.
               mechanics-based two-scale model for high-cycle fatigue life   Technologies. 2021;9(1):2.
               prediction considering the two-segment characteristic in S-N      doi: 10.3390/technologies9010002
               curves. Fatigue Fract Eng Mater Struct. 2020;43(2):387-402.
                                                               49.  Le-Khac PH, Healy G, Smeaton AF. Contrastive
               doi: 10.1111/ffe.13161                             representation learning: A  framework and review.  IEEE
            38.  Brown MW, Miller KJ. A theory for fatigue failure under   Access. 2020;8:193907-193934.
               multiaxial stress-strain conditions.  Proc Inst Mech Eng.      doi: 10.1109/ACCESS.2020.3031549
               1973;187(1):745-755.
                                                               50.  Liu X, Zhang F, Hou Z,  et al. Self-supervised Learning:
               doi: 10.1243/pime_proc_1973_187_161_02             Generative or Contrastive. In:  IEEE Transactions on
            39.  Carraro PA, Quaresimin M. A damage based model for crack   Knowledge and Data Engineering; 2021. p. 1-1.
               initiation in unidirectional composites under multiaxial      doi: 10.1109/TKDE.2021.3090866
               cyclic loading. Compos Sci Technol. 2014;99:154-163.
                                                               51.  van den Oord A, Li Y, Vinyals O. Representation Learning
               doi: 10.1016/j.compscitech.2014.05.012             with Contrastive Predictive Coding; 2019. arXiv. Available
            40.  Wang L, Zhu S, Luo C. Physics-guided machine learning   from: https://arxiv.org/abs/1807.03748 [Last accessed on
               frameworks for fatigue life prediction of AM materials. Int J   2025 Jan 08].
               Fatigue. 2023;172:107658.                       52.  He K, Fan H, Wu Y,  et al. Momentum Contrast for
               doi: 10.1016/j.ijfatigue.2023.107658               Unsupervised Visual Representation Learning. In:  2020
                                                                  IEEE/CVF Conference on Computer Vision and Pattern
            41.  Dong Y, Yang X, Chang D, Li Q. Predicting fatigue life of   Recognition (CVPR); 2020. p.  9726-9735. Available from:
               multi-defect materials using the fracture mechanics-based   https://ieeexplore.ieee.org/document/9157636  [Last
               physics-informed neural network framework. Int J Fatigue.   accessed on 2025 Jan 08].
               2025;190:108626.
                                                               53.  Grill JB, Strub F, Altché F, et al. Bootstrap your own latent
               doi: 10.1016/j.ijfatigue.2024.108626
                                                                  a new approach to self-supervised learning. In: Proceedings
            42.  Fan JL, Zhu G, Zhu ML, Xuan FZ. A data-physics integrated   of the 34  International Conference on Neural Information
                                                                         th
               approach to life prediction in very high cycle fatigue regime.   Processing Systems. Red Hook, NY, USA: Curran Associates
               Int J Fatigue. 2023;176:107917.                    Inc.; 2020. p. 21271-21284.
               doi: 10.1016/j.ijfatigue.2023.107917            54.  Radford A, Kim JW, Hallacy C, et al. Learning Transferable
                                                                  Visual  Models  from  Natural  Language  Supervision. In:
            43.  Gan L, Wu H, Zhong Z. On the use of data-driven
               machine learning for remaining life estimation of metallic   International Conference on Machine Learning. PMLR; 2021.
               materials based on Ye-Wang damage theory. Int J Fatigue.   p. 8748-8763.
               2022;156:106666.                                55.  Yang C, An Z, Zhou H, et al. Online knowledge distillation
               doi: 10.1016/j.ijfatigue.2021.106666               via mutual contrastive learning for visual recognition. IEEE
                                                                  Trans Pattern Anal Mach Intell. 2023;45(8):10212-10227.
            44.  Wang H, Li B, Xuan FZ. Fatigue-life prediction of additively
               manufactured metals by continuous damage mechanics      doi: 10.1109/TPAMI.2023.3257878
               (CDM)-informed machine learning with sensitive features.   56.  Baevski A, Zhou H, Mohamed A, Auli M.  wav2vec 2.0:
               Int J Fatigue. 2022;164:107147.                    A Framework for  Self-Supervised  Learning  of Speech
                                                                                                  th
               doi: 10.1016/j.ijfatigue.2022.107147               Representations.  Proceedings of the 34   International
                                                                  Conference on Neural Information Processing Systems
            45.  Cam LML, Neyman J.  Proceedings of the Fifth Berkeley   (NeurIPS 2020); 2020. p. 12449-12460.
               Symposium on Mathematical Statistics and Probability.
               United States: University of California Press; 1967.  57.  Hershey JR, Chen Z, Le Roux J, Watanabe S. Deep
                                                                  clustering: Discriminative embeddings for segmentation
            46.  Kingma DP, Welling M. Auto-Encoding Variational Bayes.   and separation. In: 2016 IEEE International Conference on
                               nd
               In Proceedings of the 2  International Conference on Learning   Acoustics, Speech and Signal Processing (ICASSP); 2016.
               Representations (ICLR2014); 2014.                  p.  31-35. Available from: https://ieeexplore.ieee.org/
               doi: 10.48550/arXiv.1312.6114                      abstract/document/7471631 [Last accessed on 2025 Jan 13].
            47.  Zhang CS, Chen J, Li QL, Deng BQ, Wang J, Chen CC.   58.  Hu H, Wang X, Zhang Y, Chen Q, Guan Q. A comprehensive
               Deep contrastive learning: A survey. Acta Automatica Sin.   survey  on  contrastive  learning.  Neurocomputing.
               2023;49(1):15-39.                                  2024;610:128645.


            Volume 2 Issue 1 (2025)                         71                        doi: 10.36922/IJAMD025040004
   72   73   74   75   76   77   78   79   80