Page 77 - IJAMD-2-1
P. 77
International Journal of AI for
Materials and Design
Fatigue life prediction via contrastive learning
component. Int J Mech Sci. 2017;124-125:48-58. doi: 10.16383/j.aas.c220421
doi: 10.1016/j.ijmecsci.2017.03.002 48. Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F.
37. Yang S, Hu W, Meng Q, Zhao B. A new continuum damage A survey on contrastive self-supervised learning.
mechanics-based two-scale model for high-cycle fatigue life Technologies. 2021;9(1):2.
prediction considering the two-segment characteristic in S-N doi: 10.3390/technologies9010002
curves. Fatigue Fract Eng Mater Struct. 2020;43(2):387-402.
49. Le-Khac PH, Healy G, Smeaton AF. Contrastive
doi: 10.1111/ffe.13161 representation learning: A framework and review. IEEE
38. Brown MW, Miller KJ. A theory for fatigue failure under Access. 2020;8:193907-193934.
multiaxial stress-strain conditions. Proc Inst Mech Eng. doi: 10.1109/ACCESS.2020.3031549
1973;187(1):745-755.
50. Liu X, Zhang F, Hou Z, et al. Self-supervised Learning:
doi: 10.1243/pime_proc_1973_187_161_02 Generative or Contrastive. In: IEEE Transactions on
39. Carraro PA, Quaresimin M. A damage based model for crack Knowledge and Data Engineering; 2021. p. 1-1.
initiation in unidirectional composites under multiaxial doi: 10.1109/TKDE.2021.3090866
cyclic loading. Compos Sci Technol. 2014;99:154-163.
51. van den Oord A, Li Y, Vinyals O. Representation Learning
doi: 10.1016/j.compscitech.2014.05.012 with Contrastive Predictive Coding; 2019. arXiv. Available
40. Wang L, Zhu S, Luo C. Physics-guided machine learning from: https://arxiv.org/abs/1807.03748 [Last accessed on
frameworks for fatigue life prediction of AM materials. Int J 2025 Jan 08].
Fatigue. 2023;172:107658. 52. He K, Fan H, Wu Y, et al. Momentum Contrast for
doi: 10.1016/j.ijfatigue.2023.107658 Unsupervised Visual Representation Learning. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern
41. Dong Y, Yang X, Chang D, Li Q. Predicting fatigue life of Recognition (CVPR); 2020. p. 9726-9735. Available from:
multi-defect materials using the fracture mechanics-based https://ieeexplore.ieee.org/document/9157636 [Last
physics-informed neural network framework. Int J Fatigue. accessed on 2025 Jan 08].
2025;190:108626.
53. Grill JB, Strub F, Altché F, et al. Bootstrap your own latent
doi: 10.1016/j.ijfatigue.2024.108626
a new approach to self-supervised learning. In: Proceedings
42. Fan JL, Zhu G, Zhu ML, Xuan FZ. A data-physics integrated of the 34 International Conference on Neural Information
th
approach to life prediction in very high cycle fatigue regime. Processing Systems. Red Hook, NY, USA: Curran Associates
Int J Fatigue. 2023;176:107917. Inc.; 2020. p. 21271-21284.
doi: 10.1016/j.ijfatigue.2023.107917 54. Radford A, Kim JW, Hallacy C, et al. Learning Transferable
Visual Models from Natural Language Supervision. In:
43. Gan L, Wu H, Zhong Z. On the use of data-driven
machine learning for remaining life estimation of metallic International Conference on Machine Learning. PMLR; 2021.
materials based on Ye-Wang damage theory. Int J Fatigue. p. 8748-8763.
2022;156:106666. 55. Yang C, An Z, Zhou H, et al. Online knowledge distillation
doi: 10.1016/j.ijfatigue.2021.106666 via mutual contrastive learning for visual recognition. IEEE
Trans Pattern Anal Mach Intell. 2023;45(8):10212-10227.
44. Wang H, Li B, Xuan FZ. Fatigue-life prediction of additively
manufactured metals by continuous damage mechanics doi: 10.1109/TPAMI.2023.3257878
(CDM)-informed machine learning with sensitive features. 56. Baevski A, Zhou H, Mohamed A, Auli M. wav2vec 2.0:
Int J Fatigue. 2022;164:107147. A Framework for Self-Supervised Learning of Speech
th
doi: 10.1016/j.ijfatigue.2022.107147 Representations. Proceedings of the 34 International
Conference on Neural Information Processing Systems
45. Cam LML, Neyman J. Proceedings of the Fifth Berkeley (NeurIPS 2020); 2020. p. 12449-12460.
Symposium on Mathematical Statistics and Probability.
United States: University of California Press; 1967. 57. Hershey JR, Chen Z, Le Roux J, Watanabe S. Deep
clustering: Discriminative embeddings for segmentation
46. Kingma DP, Welling M. Auto-Encoding Variational Bayes. and separation. In: 2016 IEEE International Conference on
nd
In Proceedings of the 2 International Conference on Learning Acoustics, Speech and Signal Processing (ICASSP); 2016.
Representations (ICLR2014); 2014. p. 31-35. Available from: https://ieeexplore.ieee.org/
doi: 10.48550/arXiv.1312.6114 abstract/document/7471631 [Last accessed on 2025 Jan 13].
47. Zhang CS, Chen J, Li QL, Deng BQ, Wang J, Chen CC. 58. Hu H, Wang X, Zhang Y, Chen Q, Guan Q. A comprehensive
Deep contrastive learning: A survey. Acta Automatica Sin. survey on contrastive learning. Neurocomputing.
2023;49(1):15-39. 2024;610:128645.
Volume 2 Issue 1 (2025) 71 doi: 10.36922/IJAMD025040004

