Page 76 - IJAMD-2-1
P. 76
International Journal of AI for
Materials and Design
Fatigue life prediction via contrastive learning
network for low cycle fatigue life prediction of compacted doi: 10.1016/j.ijfatigue.2024.108187
graphite cast iron based on small data. Int J Fatigue. 26. Zhu S, Zhang Y, Zhu B, et al. High cycle fatigue life prediction
2024;188:108509.
of titanium alloys based on a novel deep learning approach.
doi: 10.1016/j.ijfatigue.2024.108509 Int J Fatigue. 2024;182:108206.
16. Sun X, Zhou K, Shi S, Song K, Chen X. A new cyclical doi: 10.1016/j.ijfatigue.2024.108206
generative adversarial network based data augmentation 27. Liao H, Pan J, Su X, Sun X, Chen X. A path-dependent
method for multiaxial fatigue life prediction. Int J Fatigue. adaptive physics-informed neural network for multiaxial
2022;162:106996. fatigue life prediction. Int J Fatigue. 2025;193:108799.
doi: 10.1016/j.ijfatigue.2022.106996 doi: 10.1016/j.ijfatigue.2024.108799
17. Sun X, Zhou T, Song K, Chen X. An image recognition 28. Chen S, Zhou X, Bai Y. A frequency domain enhanced
based multiaxial low-cycle fatigue life prediction method multi-view neural network approach to multiaxial fatigue
with CNN model. Int J Fatigue. 2023;167:107324. life prediction for various metal materials. Int J Fatigue.
doi: 10.1016/j.ijfatigue.2022.107324 2025;190:108620.
18. Zhou T, Sun X, Yu Z, Chen X. A generalization ability- doi: 10.1016/j.ijfatigue.2024.108620
enhanced image recognition based multiaxial fatigue life 29. Zhang P, Tang K, Wang A, Wu H, Zhong Z. Neural network
prediction method for complex loading conditions. Eng integrated with symbolic regression for multiaxial fatigue
Fract Mech. 2024;295:109802. life prediction. Int J Fatigue. 2024;188:108535.
doi: 10.1016/j.engfracmech.2023.109802 doi: 10.1016/j.ijfatigue.2024.108535
19. Wang H, Zhang J, Li B, et al. Machine learning-based 30. Long X, Li H, Iyela PM, Kang SB. Predicting the bond stress-
fatigue life prediction of laser powder bed fusion additively slip behavior of steel reinforcement in concrete under static
manufactured Hastelloy X via nondestructively detected and dynamic loadings by finite element, deep learning and
defects. Int J Struct Integr. 2024;16(1):104-126. analytical methods. Eng Fail Anal. 2024;161:108312.
doi: 10.1108/IJSI-09-2024-0161 doi: 10.1016/j.engfailanal.2024.108312
20. Zhao F, Cui J, Yuan M, Zhao J. A weakly supervised 31. Zhou K, Sun X, Shi S, Song K, Chen X. Machine learning-
pairwise comparison learning approach for bearing health based genetic feature identification and fatigue life prediction.
quantitative evaluation and remaining useful life prediction. Fatigue Fract Eng Mater Struct. 2021;44(9):2524-2537.
Eng Computat. 2023;40(7/8):1593-1616.
doi: 10.1111/ffe.13532
doi: 10.1108/EC-12-2022-0747
32. Zhou T, Sun X, Chen X. A multiaxial low-cycle fatigue
21. Mao M, Wang W, Lu C, Jia F, Long X. Machine learning prediction method under irregular loading by ANN
for board-level drop response of BGA packaging structure. model with knowledge-based features. Int J Fatigue.
Microelectron Reliabil. 2022;134:114553. 2023;176:107868.
doi: 10.1016/j.microrel.2022.114553 doi: 10.1016/j.ijfatigue.2023.107868
22. Long X, Lu C, Shen Z, Su Y. Identification of Mechanical 33. Long X, Ding X, Li J, Dong R, Su Y, Chang C. Indentation
Properties of Thin-Film Elastoplastic Materials by Machine reverse algorithm of mechanical response for elastoplastic
Learning. Acta Mechanica Solida Sinica. 2023;36(1):13-21. coatings based on LSTM deep learning. Materials.
doi: 10.1007/s10338-022-00340-5 2023;16(7):2617.
23. Long X, Mao M, Lu C, Li C, Li R. Modeling of doi: 10.3390/ma16072617
heterogeneous materials at high strain rates with machine 34. Wang CH, Brown MW. A path-independent parameter for
learning algorithms trained by finite element simulations. fatigue under proportional and non-proportional loading.
J Micromech Mol Phys. 2021;6(1):2150001. Fatigue Fract Eng Mater Struct. 1993;16(12):1285-1297.
doi: 10.1142/S2424913021500016 doi: 10.1111/j.1460-2695.1993.tb00739.x
24. Cao W, Sun X, Li Y, et al. Multiaxial damage parameter 35. Fatemi A, Socie DF. A critical plane approach to multiaxial
evaluation by neural network-based symbolic regression. fatigue damage including out-of-phase loading. Fatigue
Eng Fract Mechan. 2025;315:110809. Fract Eng Mater Struct. 1988;11(3):149-165.
doi: 10.1016/j.engfracmech.2025.110809 doi: 10.1111/j.1460-2695.1988.tb01169.x
25. Jiang L, Hu Y, Liu Y, et al. Physics-informed machine 36. Zhan Z, Hu W, Li B, Zhang Y, Meng Q, Guan Z. Continuum
learning for low-cycle fatigue life prediction of 316 stainless damage mechanics combined with the extended finite
steels. Int J Fatigue. 2024;182:108187. element method for the total life prediction of a metallic
Volume 2 Issue 1 (2025) 70 doi: 10.36922/IJAMD025040004

