Page 76 - IJAMD-2-1
P. 76

International Journal of AI for
            Materials and Design
                                                                             Fatigue life prediction via contrastive learning


               network for low cycle fatigue life prediction of compacted      doi: 10.1016/j.ijfatigue.2024.108187
               graphite  cast  iron  based  on  small  data.  Int J Fatigue.   26.  Zhu S, Zhang Y, Zhu B, et al. High cycle fatigue life prediction
               2024;188:108509.
                                                                  of titanium alloys based on a novel deep learning approach.
               doi: 10.1016/j.ijfatigue.2024.108509               Int J Fatigue. 2024;182:108206.
            16.  Sun X, Zhou K, Shi S, Song K, Chen X. A  new cyclical      doi: 10.1016/j.ijfatigue.2024.108206
               generative adversarial network based data augmentation   27.  Liao  H,  Pan  J,  Su  X,  Sun  X,  Chen  X.  A  path-dependent
               method for multiaxial fatigue life prediction. Int J Fatigue.   adaptive physics-informed neural network for multiaxial
               2022;162:106996.                                   fatigue life prediction. Int J Fatigue. 2025;193:108799.
               doi: 10.1016/j.ijfatigue.2022.106996               doi: 10.1016/j.ijfatigue.2024.108799
            17.  Sun  X,  Zhou T, Song  K,  Chen  X.  An  image  recognition   28.  Chen  S, Zhou X, Bai Y. A  frequency domain enhanced
               based multiaxial low-cycle fatigue life prediction method   multi-view neural network approach to multiaxial fatigue
               with CNN model. Int J Fatigue. 2023;167:107324.    life  prediction for  various  metal  materials.  Int J  Fatigue.
               doi: 10.1016/j.ijfatigue.2022.107324               2025;190:108620.
            18.  Zhou  T,  Sun  X,  Yu  Z,  Chen X.  A  generalization  ability-     doi: 10.1016/j.ijfatigue.2024.108620
               enhanced image recognition based multiaxial fatigue life   29.  Zhang P, Tang K, Wang A, Wu H, Zhong Z. Neural network
               prediction method for complex loading conditions.  Eng   integrated with symbolic regression for multiaxial fatigue
               Fract Mech. 2024;295:109802.                       life prediction. Int J Fatigue. 2024;188:108535.
               doi: 10.1016/j.engfracmech.2023.109802             doi: 10.1016/j.ijfatigue.2024.108535
            19.  Wang H, Zhang J, Li B,  et al. Machine learning-based   30.  Long X, Li H, Iyela PM, Kang SB. Predicting the bond stress-
               fatigue life prediction of laser powder bed fusion additively   slip behavior of steel reinforcement in concrete under static
               manufactured  Hastelloy  X  via  nondestructively  detected   and dynamic loadings by finite element, deep learning and
               defects. Int J Struct Integr. 2024;16(1):104-126.  analytical methods. Eng Fail Anal. 2024;161:108312.
               doi: 10.1108/IJSI-09-2024-0161                     doi: 10.1016/j.engfailanal.2024.108312
            20.  Zhao F, Cui J, Yuan M, Zhao J. A  weakly supervised   31.  Zhou K, Sun X, Shi S, Song K, Chen X. Machine learning-
               pairwise comparison learning approach for bearing health   based genetic feature identification and fatigue life prediction.
               quantitative evaluation and remaining useful life prediction.   Fatigue Fract Eng Mater Struct. 2021;44(9):2524-2537.
               Eng Computat. 2023;40(7/8):1593-1616.
                                                                  doi: 10.1111/ffe.13532
               doi: 10.1108/EC-12-2022-0747
                                                               32.  Zhou  T,  Sun  X,  Chen  X.  A  multiaxial  low-cycle  fatigue
            21.  Mao  M,  Wang  W,  Lu  C,  Jia  F,  Long  X.  Machine  learning   prediction method under irregular loading by ANN
               for board-level drop response of BGA packaging structure.   model with knowledge-based features.  Int J Fatigue.
               Microelectron Reliabil. 2022;134:114553.           2023;176:107868.
               doi: 10.1016/j.microrel.2022.114553                doi: 10.1016/j.ijfatigue.2023.107868
            22.   Long X, Lu C, Shen Z, Su Y. Identification of Mechanical   33.  Long X, Ding X, Li J, Dong R, Su Y, Chang C. Indentation
               Properties of Thin-Film Elastoplastic Materials by Machine   reverse algorithm of mechanical response for elastoplastic
               Learning. Acta Mechanica Solida Sinica. 2023;36(1):13-21.  coatings based on LSTM deep learning.  Materials.
               doi: 10.1007/s10338-022-00340-5                    2023;16(7):2617.

            23.  Long  X, Mao  M, Lu  C, Li  C, Li  R. Modeling of      doi: 10.3390/ma16072617
               heterogeneous materials at high strain rates with machine   34.  Wang CH, Brown MW. A path-independent parameter for
               learning algorithms trained by finite element simulations.   fatigue under proportional and non-proportional loading.
               J Micromech Mol Phys. 2021;6(1):2150001.           Fatigue Fract Eng Mater Struct. 1993;16(12):1285-1297.
               doi: 10.1142/S2424913021500016                     doi: 10.1111/j.1460-2695.1993.tb00739.x
            24.  Cao W, Sun X, Li Y,  et al. Multiaxial damage parameter   35.  Fatemi A, Socie DF. A critical plane approach to multiaxial
               evaluation by neural network-based symbolic regression.   fatigue damage including out-of-phase loading.  Fatigue
               Eng Fract Mechan. 2025;315:110809.                 Fract Eng Mater Struct. 1988;11(3):149-165.
               doi: 10.1016/j.engfracmech.2025.110809             doi: 10.1111/j.1460-2695.1988.tb01169.x
            25.  Jiang L, Hu Y, Liu Y,  et  al. Physics-informed machine   36.  Zhan Z, Hu W, Li B, Zhang Y, Meng Q, Guan Z. Continuum
               learning for low-cycle fatigue life prediction of 316 stainless   damage mechanics combined with the extended finite
               steels. Int J Fatigue. 2024;182:108187.            element  method  for  the  total  life  prediction  of  a  metallic


            Volume 2 Issue 1 (2025)                         70                        doi: 10.36922/IJAMD025040004
   71   72   73   74   75   76   77   78   79   80