Page 50 - IJAMD-2-3
P. 50

International Journal of AI for
            Materials and Design                                             Biomimetic ML for AFSD aluminum properties



            27.  Wei J, He C, Dong R, Tian N, Qin G. Enhancing mechanical   mechanical,  tribological,  and  electrochemical
               properties and defects elimination in 2024 aluminum   characteristics,  and  process-structure-property
               alloy through interlayer friction stir processing in wire arc   relationships. J Alloys Compd. 2025;1013:178553.
               additive manufacturing. Mater Sci Eng A. 2024;901:146582.
                                                                  doi: 10.1016/j.jallcom.2025.178553
               doi: 10.1016/j.msea.2024.146582
                                                               35.  Palya NI, Fraser K, Zhu N, et al. Microstructure prediction
            28.  Das A, Medhi T, Kapil S, Biswas P. Multi-track multi-layer   from smooth particle hydrodynamics process simulations
               friction stir additive manufacturing of AA6061-T6 alloy.   of additive friction stir deposition. Metall Mater Trans A.
               Prog Addit Manuf. 2024;9(4):835-855.               2024;55(9):3601-3616.
               doi: 10.1007/s40964-023-00485-w                    doi: 10.1007/s11661-024-07499-1
            29.  Germano  E, Walker  J,  Mills  B,  et al.  Enhancing  additive   36.  Modi U, Rai A, Ahmed S. Research prospects of friction
               friction  stir  deposition  through  comprehensive  ultrasonic   stir additive manufacturing (FSAM).  AIP Conf Proc.
               defect detection and process optimisation. In:  UK  and
               Ireland IEEE Ultrasonics, Ferroelectrics and Frequency   2024;2960(1):030006.
               Control Chapter. Ireland: IEEE; 2024.              doi: 10.1063/5.0183061
            30.  Wang H, Li Y, Zhang M, et al. Repairing the 7075 Al alloy plate   37.  Rapaka R, Ladi H,  Raja D, Muvvala G, Mukherjee T,
               by additive friction stir deposition with different feedstock   Vicharapu B. Understanding in-process responses in multi-
               rods. Int J Adv Manuf Technol. 2024;134(1):921-933.  layer friction stir additive manufacturing: Temperature,
               doi: 10.1007/s00170-024-14186-3                    viscosity, tool torque, and mechanical properties.  J  Mater
                                                                  Process Technol. 2024;330:118491.
            31.  Yakubov V, Ostergaard H, Bhagavath S,  et al. Hardness
               Distribution and Defect Formation in  Aluminium  Alloys      doi: 10.1016/j.jmatprotec.2024.118491
               Fabricated Via Additive Friction Stir Deposition (AFSD).   38.  Qiao Q, Liu Q, Pu J, et al. A comparative study of machine
               In 11   Australasian Congress on Applied Mechanics   learning in predicting the mechanical properties of the
                    th
               (ACAM2024). Brisbane: Engineers Australia; 2024.   deposited AA6061 alloys via additive friction stir deposition.
               p. 244-251.
                                                                  Mater Genome Eng Adv. 2024;2(1):e31.
            32.  Kallien Z, Rath L, Roos A, Klusemann B. Application of
               friction surfacing for solid state additive manufacturing of      doi: 10.1002/mgea.31
               cylindrical shell structures. Addit Manuf Lett. 2024;8:100184.  39.  Zhu Y, Wu X, Gotawala N, Higdon DM, Hang ZY. Thermal
               doi: 10.1016/j.addlet.2023.100184                  prediction of additive friction stir deposition through
                                                                  Bayesian learning-enabled explainable artificial intelligence.
            33.  Griffiths RJ, Garcia D, Hahn GD, Lua J, Phan N, Hang ZY.   J Manuf Syst. 2024;72:1-15.
               A  non-melting  additive approach to  structural repair
               of aluminum aircraft fastener holes.  Addit Manuf Lett.      doi: 10.1016/j.jmsy.2023.10.015
               2024;11:100249.                                 40.  Shi T, Wu J, Ma M, Charles E, Schmitz T. AFSD-Nets:
               doi: 10.1016/j.addlet.2024.100249                  A physics-informed machine learning model for predicting
                                                                  the temperature evolution during additive friction stir
            34.  Abbasi–Nahr  M,   Mirsalehi,  SE.  Additive
               friction  stir deposition of AA5083/MoS2-diamond   deposition. J Manuf Sci Eng. 2024;146(8):081003.
               hybrid  nanocomposites: Investigating their metallurgical,      doi: 10.1115/1.4065178
























            Volume 2 Issue 3 (2025)                         44                             doi: 10.36922/ijamd.5014
   45   46   47   48   49   50   51   52   53   54   55