Page 50 - IJAMD-2-3
P. 50
International Journal of AI for
Materials and Design Biomimetic ML for AFSD aluminum properties
27. Wei J, He C, Dong R, Tian N, Qin G. Enhancing mechanical mechanical, tribological, and electrochemical
properties and defects elimination in 2024 aluminum characteristics, and process-structure-property
alloy through interlayer friction stir processing in wire arc relationships. J Alloys Compd. 2025;1013:178553.
additive manufacturing. Mater Sci Eng A. 2024;901:146582.
doi: 10.1016/j.jallcom.2025.178553
doi: 10.1016/j.msea.2024.146582
35. Palya NI, Fraser K, Zhu N, et al. Microstructure prediction
28. Das A, Medhi T, Kapil S, Biswas P. Multi-track multi-layer from smooth particle hydrodynamics process simulations
friction stir additive manufacturing of AA6061-T6 alloy. of additive friction stir deposition. Metall Mater Trans A.
Prog Addit Manuf. 2024;9(4):835-855. 2024;55(9):3601-3616.
doi: 10.1007/s40964-023-00485-w doi: 10.1007/s11661-024-07499-1
29. Germano E, Walker J, Mills B, et al. Enhancing additive 36. Modi U, Rai A, Ahmed S. Research prospects of friction
friction stir deposition through comprehensive ultrasonic stir additive manufacturing (FSAM). AIP Conf Proc.
defect detection and process optimisation. In: UK and
Ireland IEEE Ultrasonics, Ferroelectrics and Frequency 2024;2960(1):030006.
Control Chapter. Ireland: IEEE; 2024. doi: 10.1063/5.0183061
30. Wang H, Li Y, Zhang M, et al. Repairing the 7075 Al alloy plate 37. Rapaka R, Ladi H, Raja D, Muvvala G, Mukherjee T,
by additive friction stir deposition with different feedstock Vicharapu B. Understanding in-process responses in multi-
rods. Int J Adv Manuf Technol. 2024;134(1):921-933. layer friction stir additive manufacturing: Temperature,
doi: 10.1007/s00170-024-14186-3 viscosity, tool torque, and mechanical properties. J Mater
Process Technol. 2024;330:118491.
31. Yakubov V, Ostergaard H, Bhagavath S, et al. Hardness
Distribution and Defect Formation in Aluminium Alloys doi: 10.1016/j.jmatprotec.2024.118491
Fabricated Via Additive Friction Stir Deposition (AFSD). 38. Qiao Q, Liu Q, Pu J, et al. A comparative study of machine
In 11 Australasian Congress on Applied Mechanics learning in predicting the mechanical properties of the
th
(ACAM2024). Brisbane: Engineers Australia; 2024. deposited AA6061 alloys via additive friction stir deposition.
p. 244-251.
Mater Genome Eng Adv. 2024;2(1):e31.
32. Kallien Z, Rath L, Roos A, Klusemann B. Application of
friction surfacing for solid state additive manufacturing of doi: 10.1002/mgea.31
cylindrical shell structures. Addit Manuf Lett. 2024;8:100184. 39. Zhu Y, Wu X, Gotawala N, Higdon DM, Hang ZY. Thermal
doi: 10.1016/j.addlet.2023.100184 prediction of additive friction stir deposition through
Bayesian learning-enabled explainable artificial intelligence.
33. Griffiths RJ, Garcia D, Hahn GD, Lua J, Phan N, Hang ZY. J Manuf Syst. 2024;72:1-15.
A non-melting additive approach to structural repair
of aluminum aircraft fastener holes. Addit Manuf Lett. doi: 10.1016/j.jmsy.2023.10.015
2024;11:100249. 40. Shi T, Wu J, Ma M, Charles E, Schmitz T. AFSD-Nets:
doi: 10.1016/j.addlet.2024.100249 A physics-informed machine learning model for predicting
the temperature evolution during additive friction stir
34. Abbasi–Nahr M, Mirsalehi, SE. Additive
friction stir deposition of AA5083/MoS2-diamond deposition. J Manuf Sci Eng. 2024;146(8):081003.
hybrid nanocomposites: Investigating their metallurgical, doi: 10.1115/1.4065178
Volume 2 Issue 3 (2025) 44 doi: 10.36922/ijamd.5014

