Page 93 - IJAMD-2-3
P. 93

International Journal of AI for
            Materials and Design                                             SHM using improved CNT-BP and LSTM-NN



               (ICPHM); 2020. p. 1-6.                             2020;108:106036.
               doi: 10.1109/ICPHM49022.2020.9187033               doi: 10.1016/j.ultras.2019.106036
            23.  Pan Y, Khodaei ZS, Aliabadi FM. In-service fatigue crack   28.  Yelve NP, Tse PW, Masurkar F. Theoretical and experimental
               monitoring through baseline-free automated detection and   evaluation of material nonlinearity in metal plates using
               physics-informed neural network quantification. NDT E Int.   Lamb waves. Struct Control Health Monit. 2018;25(6):e2164.
               2025;153:103360.
                                                                  doi: 10.1002/stc.2164
               doi: 10.1016/j.ndteint.2025.103360
                                                               29.  Masurkar F, Tse P, Yelve NP. Evaluation of inherent and
            24.  Shin H, Yoon T, Yoon S. Fatigue life predictor:   dislocation induced material nonlinearity in metallic plates
               Predicting fatigue life of metallic material using   using Lamb waves. Appl Acoust. 2018;136:76-85.
               LSTM with a contextual attention model.  RSC Adv.      doi: 10.1016/j.apacoust.2018.02.011
               2025;15(20):15781-15795.
                                                               30.  Xu N, Fu Z, Wang Y, Shen X. Study on the short fatigue crack
               doi: 10.1039/d5ra01578b
                                                                  initiation and propagation behavior of 42CrMo. Adv Mech
            25.  Giannella V, Bardozzo F, Postiglione A, Tagliaferri R, Sepe R,   Eng. 2022;14(9):1-9.
               Armentani E. Neural networks for fatigue crack propagation      doi: 10.1177/16878132221119928
               predictions in real-time under uncertainty. Comput Struct.
               2023;288:107157.                                31.  Ibrahim MFE, Miller KJ. Determination of fatigue
                                                                  crack initiation life.  Fatigue  Fract  Eng  Mater  Struct.
               doi: 10.1016/j.compstruc.2023.107157
                                                                  1979;2(4):351-360.
            26.  Colah. Understanding LSTMs; 2015. Available from: https://     doi: 10.1111/j.1460-2695.1979.tb01093.x
               colah.github.io/posts/2015-08-Understanding-LSTMs/
               [Last accessed on 2025 Sep 19].                 32.  Wang H, Liu X, Wang X, Wang Y. Numerical method
                                                                  for estimating fatigue crack initiation size using elastic-
            27.  Masurkar F, Tse P. Theoretical and experimental evaluation   plastic fracture mechanics method.  Appl Math Model.
               of the health status of a 1018 steel I-beam using nonlinear   2019;73:365-377.
               rayleigh waves: Application to evaluating localized
               plastic damage due to impact loading.  Ultrasonics.      doi: 10.1016/j.apm.2019.04.010










































            Volume 2 Issue 3 (2025)                         87                        doi: 10.36922/IJAMD025310028
   88   89   90   91   92   93   94   95   96