Page 92 - IJAMD-2-3
P. 92
International Journal of AI for
Materials and Design SHM using improved CNT-BP and LSTM-NN
3. Yelve NP, Masurkar F, Tse PW. Application of rayleigh wave- doi: 10.3390/s20164383
based nonlinearity parameter to estimate the remnant useful 13. Jiang XW, Wang Z, Lu SW, et al. Vibration monitoring for
life of fatigued thick aluminum plates. ISSS J Micro Smart
Syst. 2021;10(2):161-178. composite structures using buckypaper sensors arrayed
by flexible printed circuit. Int J Smart Nano Mater.
doi: 10.1007/s41683-021-00074-5 2021;12(2):198-217.
4. Luo W, Liu Y, Saha M. CNT Bucky Paper Enhanced Sandwich doi: 10.1080/19475411.2021.1910874
Composites for In-Situ Load Sensing. In: Proceedings of the
ASME International Mechanical Engineering Congress and 14. Hehr A, Schulz M, Shanov V, Song Y. Micro-crack
Exposition. Vol. 58493. 2017. p. V014T11A044. detection and assessment with embedded carbon nanotube
thread in composite materials. Struct Health Monit.
doi: 10.1115/IMECE2017-71550 2014;13(5):512-524.
5. Wang X, An B, Lu S, Ma K, Zhang L, Xu T. Electrical doi: 10.1177/1475921714532987
response of carbon nanotube buckypaper sensor subjected
to monotonic tension, cycle tension and temperature. Micro 15. Ribeiro B, Botelho EC, Costa ML, Bandeira CF. Carbon
Nano Lett. 2018;13(6):862-867. nanotube buckypaper reinforced polymer composites:
A review. Polímeros. 2017;27(3):247-255.
doi: 10.1049/mnl.2017.0914
doi: 10.1590/0104-1428.03916
6. Lu S, Du K, Wang X, et al. Real-time monitoring of low-
velocity impact damage for composite structures with the 16. Wan Y, Yang H, Tian Z, et al. Mode I interlaminar crack
omnidirection carbon nanotubes’ buckypaper sensors. length prediction by the resistance signal of the integrated
Struct Health Monit. 2019;18(2):454-465. MWCNT sensor in WGF/epoxy composites during DCB
test. J Mater Res Technol. 2020;9(3):5922-5933.
doi: 10.1177/1475921718757937
doi: 10.1016/j.jmrt.2020.03.119
7. Lu S, Yang X, Zhang L, et al. Real-time monitoring of resin
infiltration process in vacuum assisted molding (VARI) of 17. Lecompte D, Vantomme J, Sol H. Crack detection in a
composites with carbon nanotube buckypaper sensor. Mater concrete beam using two different camera techniques. Struct
Res Express. 2019;6(11):115628. Health Monit. 2006;5(1):59-68.
doi: 10.1088/2053-1591/ab507b doi: 10.1177/1475921706057982
8. Her SC, Hsu WC. Strain and temperature sensitivities along 18. Ashrafi B, Johnson L, Martinez-Rubi Y, Martinez M,
with mechanical properties of CNT buckypaper sensors. Mrad N. Single-walled carbon nanotube-modified epoxy
Sensors (Basel). 2020;20(11):3067. thin films for continuous crack monitoring of metallic
structures. Struct Health Monit. 2012;11(5):589-601.
doi: 10.3390/s20113067
doi: 10.1177/1475921712449509
9. Yee MJ, Mubarak NM, Khalid M, Abdullah EC,
Jagadish P. Synthesis of polyvinyl alcohol (PVA) infiltrated 19. Bian N, Ren Y, Shrivastava A, et al. Enhancing the
MWCNTs buckypaper for strain sensing application. Sci interlaminar adhesion of carbon fiber composites via carbon
Rep. 2018;8(1):17295. nanotube sheets. Acad Mater Sci. 2024;1(2).:1-11.
doi: 10.1038/s41598-018-35638-3 doi: 10.20935/AcadMatSci6206
10. Yang R, Gui X, Yao L, et al. Ultrathin, lightweight, and 20. Lin H, Zhang C, Liao N, Zhang M. Microcracked strain
flexible CNT buckypaper enhanced using MXenes for sensor based on carbon nanotubes/copper composite
electromagnetic interference shielding. Nanomicro Lett. film with high performance and waterproof property
2021;13:66. for underwater motion detection. Compos Part B Eng.
2023;254:110574.
doi: 10.1007/s40820-021-00597-4
doi: 10.1016/j.compositesb.2023.110574
11. De Paula Santos LF, Monticeli FM, Ribeiro B, Costa ML,
Alderliesten R, Botelho EC. Effect of carbon nanotube 21. Olson TM, Kwon YW, Hart DC, Loup DC, Rasmussen EA.
buckypapers on interlaminar fracture toughness of Carbon nanotube based sensor to monitor crack growth
thermoplastic composites subjected to fatigue tests. Int J in cracked aluminum structures underneath composite
Fatigue. 2025;195:108868. patching. Appl Compos Mater. 2015;22(5):457-473.
doi: 10.1016/j.ijfatigue.2025.108868 doi: 10.1007/s10443-014-9417-0
12. Ahmed S, Schumacher T, Thostenson ET, McConnell J. 22. Abbasi A, Nazari F, Nataraj C. Application of long short-
Performance evaluation of a carbon nanotube sensor for term memory neural network to crack propagation
fatigue crack monitoring of metal structures. Sensors (Basel). prognostics. In: Proceedings of the 2020 IEEE International
2020;20(16):4383. Conference on Prognostics and Health Management
Volume 2 Issue 3 (2025) 86 doi: 10.36922/IJAMD025310028

