Page 301 - IJB-10-1
P. 301
International Journal of Bioprinting Scaffolds manufacturing by fused deposition modeling
rheological, thermal, and mechanical properties. Polymers. 89. Kim YA, Chun SY, Park SB, et al. Scaffold-supported
2020;12(4) 1-13. extracellular matrices preserved by magnesium hydroxide
doi: 10.3390/POLYM12040892 nanoparticles for renal tissue regeneration. Biomater Sci.
2020;8(19):5427-5440.
83. Mantia FPL, Morreale M, Scaffaro R, Tulone S. Rheological doi: 10.1039/d0bm00871k
and mechanical behavior of LDPE/calcium carbonate
nanocomposites and microcomposites. J Appl Polym Sci. 90. Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K.
2013;127(4):2544-2552. What affects the biocompatibility of polymers? Adv Colloid
doi: 10.1002/app.37875 Interface Sci. 2021;294(1):1-15.
doi: 10.1016/j.cis.2021.102451
84. Petrucci R, Torre L. Filled polymer composites, In:
Modification of Polymer Properties. 2017;Elsevier, 23-46. 91. Wang W, Zhang B, Li M, Li J. 3D printing of PLA/n-HA
composite scaffolds with customized mechanical properties
85. Vaezi M, Yang S. Extrusion-based additive manufacturing and biological functions for bone tissue engineering.
of PEEK for biomedical applications. Virtual Phys Prototyp. Compos B Eng. 2021;224(1):1-12.
2015;10(3):123-135. doi: 10.1016/j.compositesb.2021.109192
doi: 10.1080/17452759.2015.1097053
92. Pachekoski WM, Dalmolin C, Agnelli JAM. The influence
86. Jiang W, Shi J, Li W, Sun K. Morphology, wettability, and of the industrial processing on the degradation of
mechanical properties of polycaprolactone/hydroxyapatite poly(hidroxybutyrate)—PHB. Mater Res. 2013;16(2):
composite scaffolds with interconnected pore structures 327-332.
fabricated by a mini‐deposition system. Polym Eng Sci. doi: 10.1590/S1516-14392012005000180
2012;52(11):2396-2402.
93. Laput O, Vasenina I, Salvadori MC, Savkin KP. Low-
87. Fukushima K, Tabuani D, Dottori M, Armentano I, Kenny temperature plasma treatment of polylactic acid and
JM, Camino G. Effect of temperature and nanoparticle type PLA/HA composite material. J Mater Sci. 2019;54(17):
on hydrolytic degradation of poly(lactic acid) nanocomposites. 11726-11738.
Polym Degrad Stab. 2011;96(12):2120-2129. doi: 10.1007/s10853-019-03693-4
doi: 10.1016/j.polymdegradstab.2011.09.018
94. Gómez-Cerezo MN, Lozano D, Arcos D, Vallet-Regí M,
88. Sultana N, Khan TH. In vitro degradation of PHBV Vaquette C. The effect of biomimetic mineralization of
scaffolds and nHA/PHBV composite scaffolds containing 3D-printed mesoporous bioglass scaffolds on physical
hydroxyapatite nanoparticles for bone tissue engineering. properties and in vitro osteogenicity. Mater Sci Eng C.
J Nanomater. 2012;(1):1-13. 2020;109(1):1-11.
doi: 10.1155/2012/190950 doi: 10.1016/j.msec.2019.110572
Volume 10 Issue 1 (2024) 293 https://doi.org/10.36922/ijb.0156

