Page 299 - IJB-10-1
P. 299

International Journal of Bioprinting                       Scaffolds manufacturing by fused deposition modeling




            38.  Arza CR, Jannasch P, Johansson P, Per Magnusson, Werker   49.  Ye X, Zhang Y, Liu T, et al. Beta-tricalcium phosphate
               A, Maurer FHJ. Effect of additives on the melt rheology and   enhanced mechanical and biological properties of
               thermal degradation of poly[(R)-3-hydroxybutyric acid].    3D-printed polyhydroxyalkanoates scaffold for bone tissue
               J Appl Polym Sci. 2015;132(15):1-6.                engineering. Int J Biol Macromol. 2022;209(1):1553-1561.
               doi: 10.1002/app.41836                             doi: 10.1016/j.ijbiomac.2022.04.056
            39.  Kovalcik A, Sangroniz L, Kalina M, et al. Properties   50.  Sa’ude N, Kamarudin K, Ibrahim M, Irwan Ibrahim MH.
               of scaffolds prepared by fused deposition modeling   Melt Flow Index of Recycle ABS for Fused Deposition Modeling
               of poly(hydroxyalkanoates).  Int J Biol Macromol.   (FDM) Filament. Trans Tech Publ. 2015.
               2020;161(1):364-376.                            51.  Aumnate C, Pongwisuthiruchte A, Pattananuwat P,
               doi: 10.1016/j.ijbiomac.2020.06.022                Potiyaraj P. Fabrication of ABS/graphene oxide composite

            40.  Festas AJ, Ramos A, Davim JP. Medical devices biomaterials:   filament for fused filament fabrication (FFF) 3D printing.
               A review.  Proc Inst Mech Eng L J Mater Design Appl.   Adv Mater Sci Eng. 2018;(1):1-9.
               2020;234(1):218-228.                               doi: 10.1155/2018/2830437
               doi: 10.1177/1464420719882458                   52.  Ang KC, Leong KF, Chua CK, Margam C. Investigation
            41.  Park SA, Lee SH, Kim WD. Fabrication of porous   of the mechanical properties and porosity relationships in
               polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds   fused deposition modelling‐fabricated porous structures.
               using a 3D plotting system for bone tissue engineering.   Rapid Prototyp J. 2006;1(1):1-6.
               Bioprocess Biosyst Eng. 2011;34(4):505-513.     53.  Ivorra-Martinez J, Peydro MÁ, Gomez-Caturla J, Sanchez-
               doi: 10.1007/s00449-010-0499-2                     Nacher L, Boronat T, Balart R. The effects of processing
            42.  Prakash C, Singh G, Singh S, et al. Mechanical reliability   parameters  on  mechanical  properties  of  3D-printed
               and in vitro bioactivity of 3D-printed porous polylactic   polyhydroxyalkanoates  parts.  Virtual Phys Prototyp.
               acid-hydroxyapatite scaffold.  J Mater Eng Perform.   2023;18(1):e2164734.
               2021;30(7):4946-4956.                              doi: 10.1080/17452759.2022.2164734
               doi: 10.1007/s11665-021-05566-x                 54.  Nugroho A, Ardiansyah R, Rusita L, Larasati IL. Effect of
                                                                  Layer Thickness on Flexural Properties of PLA (PolyLactic
            43.  Ho-Shui-Ling A, Bolander J, Rustom LE, Amy Wagoner Johnson   Acid) by 3D Printing. IOP Publishing. 2018.
               4, Luyten FP, Picart C. Bone regeneration strategies: Engineered
               scaffolds, bioactive molecules and stem cells current stage and   55.  Mahmood H, Pegoretti A, Brusa RS, Ceccato R.
               future perspectives. Biomaterials. 2018;180(1):143-162.  Molecular transport through 3-hydroxybutyrate co-
               doi: 10.1016/j.biomaterials.2018.07.017            3-hydroxyhexanoate biopolymer films with dispersed
                                                                  graphene oxide nanoparticles: Gas barrier, structural and
            44.  Garot C, Bettega G, Picart C. Additive manufacturing of   mechanical properties. Polym Test.2020;81(1):1-9.
               material scaffolds for bone regeneration: Toward application      doi: 10.1016/j.polymertesting.2019.106181
               in the clinics. Adv Funct Mater. 2021;31(5):2006967.
               doi: https://doi.org/10.1002/adfm.202006967     56.  Loh QL, Choong C. Three-dimensional scaffolds for tissue
                                                                  engineering applications: Role of porosity and pore size.
            45.  Eltom A, Zhong G, Muhammad A. Scaffold techniques and   Tissue Eng B Rev. 2013;19(6):485-502.
               designs  in  tissue  engineering  functions  and  purposes:  A      doi: 10.1089/ten.teb.2012.0437
               review. Adv Mater Sci Eng. 2019;(1):1-13.
               doi: 10.1155/2019/3429527                       57.  Monshi M, Esmaeili S, Kolooshani A, Moghadas BK, Saber-
                                                                  Samandari S, Khandan A. A novel three-dimensional printing
            46.  Choi WJ, Hwang KS, Kwon HJ, et al. Rapid development of   of electroconductive scaffolds for bone cancer therapy
               dual porous poly(lactic acid) foam using fused deposition   application. Nanomed J. 2020;7(2):138-148.
               modeling (FDM) 3D printing for medical scaffold
               application. Mater Sci Eng C. 2020;110(1) 1-9.  58.  Ivorra-Martinez J, Quiles-Carrillo L, Boronat T, Torres-Giner
               doi: 10.1016/j.msec.2020.110693                    S, A José. Covas. Assessment of the mechanical and thermal
                                                                  properties of injection-molded poly(3-hydroxybutyrate-co-
            47.  Backes EH, Fernandes EM, Diogo GS, et al. Engineering   3-hydroxyhexanoate)/hydroxyapatite nanoparticles parts
               3D printed bioactive composite scaffolds based on   for use in bone tissue engineering.  Polymers. 2020;12(6)
               the combination of aliphatic polyester and calcium   1-21.
               phosphates for bone tissue regeneration. Mater Sci Eng C.      doi: 10.3390/polym12061389
               2021;122(111928):1-13.
               doi: 10.1016/j.msec.2021.111928                 59.  Bordes P, Pollet E, Bourbigot S, Avérous L. Structure and
                                                                  properties of PHA/clay nano-biocomposites prepared by melt
            48.  Ribeiro JFM,  Oliveira  SM,  Alves  JL,  et  al.  Structural
               monitoring and modeling of the mechanical deformation of   intercalation. Macromol Chem Phys. 2008;209(14):1473-1484.
               three-dimensional printed poly(ε-caprolactone) scaffolds.      doi: 10.1002/macp.200800022
               Biofabrication. 2017;9(2):025015.               60.  Chacón JM, Caminero MA, García-Plaza E, Núñez PJ.
               doi: 10.1088/1758-5090/aa698e                      Additive manufacturing of PLA structures using fused


            Volume 10 Issue 1 (2024)                       291                        https://doi.org/10.36922/ijb.0156
   294   295   296   297   298   299   300   301   302   303   304