Page 299 - IJB-10-1
P. 299
International Journal of Bioprinting Scaffolds manufacturing by fused deposition modeling
38. Arza CR, Jannasch P, Johansson P, Per Magnusson, Werker 49. Ye X, Zhang Y, Liu T, et al. Beta-tricalcium phosphate
A, Maurer FHJ. Effect of additives on the melt rheology and enhanced mechanical and biological properties of
thermal degradation of poly[(R)-3-hydroxybutyric acid]. 3D-printed polyhydroxyalkanoates scaffold for bone tissue
J Appl Polym Sci. 2015;132(15):1-6. engineering. Int J Biol Macromol. 2022;209(1):1553-1561.
doi: 10.1002/app.41836 doi: 10.1016/j.ijbiomac.2022.04.056
39. Kovalcik A, Sangroniz L, Kalina M, et al. Properties 50. Sa’ude N, Kamarudin K, Ibrahim M, Irwan Ibrahim MH.
of scaffolds prepared by fused deposition modeling Melt Flow Index of Recycle ABS for Fused Deposition Modeling
of poly(hydroxyalkanoates). Int J Biol Macromol. (FDM) Filament. Trans Tech Publ. 2015.
2020;161(1):364-376. 51. Aumnate C, Pongwisuthiruchte A, Pattananuwat P,
doi: 10.1016/j.ijbiomac.2020.06.022 Potiyaraj P. Fabrication of ABS/graphene oxide composite
40. Festas AJ, Ramos A, Davim JP. Medical devices biomaterials: filament for fused filament fabrication (FFF) 3D printing.
A review. Proc Inst Mech Eng L J Mater Design Appl. Adv Mater Sci Eng. 2018;(1):1-9.
2020;234(1):218-228. doi: 10.1155/2018/2830437
doi: 10.1177/1464420719882458 52. Ang KC, Leong KF, Chua CK, Margam C. Investigation
41. Park SA, Lee SH, Kim WD. Fabrication of porous of the mechanical properties and porosity relationships in
polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds fused deposition modelling‐fabricated porous structures.
using a 3D plotting system for bone tissue engineering. Rapid Prototyp J. 2006;1(1):1-6.
Bioprocess Biosyst Eng. 2011;34(4):505-513. 53. Ivorra-Martinez J, Peydro MÁ, Gomez-Caturla J, Sanchez-
doi: 10.1007/s00449-010-0499-2 Nacher L, Boronat T, Balart R. The effects of processing
42. Prakash C, Singh G, Singh S, et al. Mechanical reliability parameters on mechanical properties of 3D-printed
and in vitro bioactivity of 3D-printed porous polylactic polyhydroxyalkanoates parts. Virtual Phys Prototyp.
acid-hydroxyapatite scaffold. J Mater Eng Perform. 2023;18(1):e2164734.
2021;30(7):4946-4956. doi: 10.1080/17452759.2022.2164734
doi: 10.1007/s11665-021-05566-x 54. Nugroho A, Ardiansyah R, Rusita L, Larasati IL. Effect of
Layer Thickness on Flexural Properties of PLA (PolyLactic
43. Ho-Shui-Ling A, Bolander J, Rustom LE, Amy Wagoner Johnson Acid) by 3D Printing. IOP Publishing. 2018.
4, Luyten FP, Picart C. Bone regeneration strategies: Engineered
scaffolds, bioactive molecules and stem cells current stage and 55. Mahmood H, Pegoretti A, Brusa RS, Ceccato R.
future perspectives. Biomaterials. 2018;180(1):143-162. Molecular transport through 3-hydroxybutyrate co-
doi: 10.1016/j.biomaterials.2018.07.017 3-hydroxyhexanoate biopolymer films with dispersed
graphene oxide nanoparticles: Gas barrier, structural and
44. Garot C, Bettega G, Picart C. Additive manufacturing of mechanical properties. Polym Test.2020;81(1):1-9.
material scaffolds for bone regeneration: Toward application doi: 10.1016/j.polymertesting.2019.106181
in the clinics. Adv Funct Mater. 2021;31(5):2006967.
doi: https://doi.org/10.1002/adfm.202006967 56. Loh QL, Choong C. Three-dimensional scaffolds for tissue
engineering applications: Role of porosity and pore size.
45. Eltom A, Zhong G, Muhammad A. Scaffold techniques and Tissue Eng B Rev. 2013;19(6):485-502.
designs in tissue engineering functions and purposes: A doi: 10.1089/ten.teb.2012.0437
review. Adv Mater Sci Eng. 2019;(1):1-13.
doi: 10.1155/2019/3429527 57. Monshi M, Esmaeili S, Kolooshani A, Moghadas BK, Saber-
Samandari S, Khandan A. A novel three-dimensional printing
46. Choi WJ, Hwang KS, Kwon HJ, et al. Rapid development of of electroconductive scaffolds for bone cancer therapy
dual porous poly(lactic acid) foam using fused deposition application. Nanomed J. 2020;7(2):138-148.
modeling (FDM) 3D printing for medical scaffold
application. Mater Sci Eng C. 2020;110(1) 1-9. 58. Ivorra-Martinez J, Quiles-Carrillo L, Boronat T, Torres-Giner
doi: 10.1016/j.msec.2020.110693 S, A José. Covas. Assessment of the mechanical and thermal
properties of injection-molded poly(3-hydroxybutyrate-co-
47. Backes EH, Fernandes EM, Diogo GS, et al. Engineering 3-hydroxyhexanoate)/hydroxyapatite nanoparticles parts
3D printed bioactive composite scaffolds based on for use in bone tissue engineering. Polymers. 2020;12(6)
the combination of aliphatic polyester and calcium 1-21.
phosphates for bone tissue regeneration. Mater Sci Eng C. doi: 10.3390/polym12061389
2021;122(111928):1-13.
doi: 10.1016/j.msec.2021.111928 59. Bordes P, Pollet E, Bourbigot S, Avérous L. Structure and
properties of PHA/clay nano-biocomposites prepared by melt
48. Ribeiro JFM, Oliveira SM, Alves JL, et al. Structural
monitoring and modeling of the mechanical deformation of intercalation. Macromol Chem Phys. 2008;209(14):1473-1484.
three-dimensional printed poly(ε-caprolactone) scaffolds. doi: 10.1002/macp.200800022
Biofabrication. 2017;9(2):025015. 60. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ.
doi: 10.1088/1758-5090/aa698e Additive manufacturing of PLA structures using fused
Volume 10 Issue 1 (2024) 291 https://doi.org/10.36922/ijb.0156

