Page 300 - IJB-10-1
P. 300
International Journal of Bioprinting Scaffolds manufacturing by fused deposition modeling
deposition modelling: Effect of process parameters on 71. Watai JS, Calvão PS, Rigolin TR, do Prado Bettini SH, Souza
mechanical properties and their optimal selection. Mater AMC. Retardation effect of nanohydroxyapatite on the
Design. 2017;124(1):143-157. hydrolytic degradation of poly (lactic acid). Polym Eng Sci.
doi: 10.1016/j.matdes.2017.03.065 2020;60(9):2152-2162.
doi: 10.1002/pen.25459
61. Kiendl J, Gao C. Controlling toughness and strength of
FDM 3D-printed PLA components through the raster layup. 72. Garcia Gonçalves LM, Rigolin TR, Frenhe BM, Bettini SHP.
Compos B Eng. 2020;180(1):1-6. On the recycling of a biodegradable polymer: Multiple
doi: 10.1016/j.compositesb.2019.107562 extrusion of poly (lactic acid). Mater Res. 2020;23(5):1-7.
62. Zhou M, Zhou X, Si L, Chen P. Modeling of bonding doi: 10.1590/1980-5373-MR-2020-0274
strength for fused filament fabrication considering bonding 73. Chaitanya S, Singh I, Song JI. Recyclability analysis of PLA/
interface evolution and molecular diffusion. J Manuf Process. sisal fiber biocomposites. Compos B Eng. 2019;173(1):1-9.
2021;68(1):1485-1494. doi: 10.1016/j.compositesb.2019.05.106
doi: 10.1016/j.jmapro.2021.06.064
74. Touati N, Kaci M, Bruzaud S, Grohens Y. The effects of
63. Santo J, Penumakala PK, Adusumalli RB. Mechanical and reprocessing cycles on the structure and properties of
electrical properties of three-dimensional printed polylactic isotactic polypropylene/cloisite 15A nanocomposites. Polym
acid–graphene–carbon nanofiber composites. Polym Degrad Stab. 2011;96(6):1064-1073.
Compos. 2021;42(7):3231-3242. doi: 10.1016/j.polymdegradstab.2011.03.015
doi: 10.1002/pc.26053
75. Agüero A, Morcillo MC, Quiles-Carrillo L, et al. Study of the
64. Singh S, Singh G, Prakash C, Ramakrishna S. Current status influence of the reprocessing cycles on the final properties of
and future directions of fused filament fabrication. J Manuf polylactide pieces obtained by injection molding. Polymers.
Process. 2020;55(1):288-306. 2019;11(12):1-21.
doi: 10.1016/j.jmapro.2020.04.049 doi: 10.3390/polym11121908
65. Ecker JV, Haider A, Burzic I, Huber A, Eder G, Hild S. 76. Majerczak K, Wadkin-Snaith D, Magueijo V, Mulheran
Mechanical properties and water absorption behavior of P, Liggat J, Johnston K. Polyhydroxybutyrate: A review of
PLA and PLA/wood composites prepared by 3D printing experimental and simulation studies of the effect of fillers
and injection moulding. Rapid Prototyp J. 2019;25(4):672- on crystallinity and mechanical properties. Polym Int.
678. 2022;71(12):1398-1408.
doi: 10.1108/RPJ-06-2018-0149
doi: 10.1002/pi.6402
66. Cisneros-López EO, Pal AK, Rodriguez AU, et al.
Recycled poly(lactic acid)–based 3D printed sustainable 77. Trakoolwannachai V, Kheolamai P, Ummartyotin S.
biocomposites: A comparative study with injection molding. Characterization of hydroxyapatite from eggshell waste and
Mater Today Sustain. 2020;7-8(1):1-12. polycaprolactone (PCL) composite for scaffold material.
doi: 10.1016/j.mtsust.2019.100027 Compos B Eng. 2019;173(1):1-7.
doi: 10.1016/j.compositesb.2019.106974
67. Lay M, Thajudin NLN, Hamid ZAA, Rusli A. Comparison of
physical and mechanical properties of PLA, ABS and nylon 78. Martín-Alfonso JE, Franco JM. Influence of polymer
6 fabricated using fused deposition modeling and injection reprocessing cycles on the microstructure and rheological
molding. Compos B Eng. 2019;176(1):107341. behavior of polypropylene/mineral oil oleogels. Polym Test.
doi: 10.1016/j.compositesb.2019.107341 2015;45(1):12-19.
doi: 10.1016/j.polymertesting.2015.04.016
68. Komal UK, Kasaudhan BK, Singh I. Comparative 79. Dhar P, Tarafder D, Kumar A, Katiyar V. Effect of cellulose
performance analysis of polylactic acid parts fabricated by nanocrystal polymorphs on mechanical, barrier and thermal
3D printing and injection molding. J Mater Eng Perform. properties of poly(lactic acid) based bionanocomposites.
2021;30(9):6522-6528. RSC Adv. 2015;5(74):60426-60440.
doi: 10.1007/s11665-021-05889-9 doi: 10.1039/c5ra06840a
69. Xu H, Xie L, Hakkarainen M. Beyond a model of polymer 80. Wang S, Chen W, Xiang H, Yang J, Zhou Z, Zhu M.
processing-triggered shear: Reconciling shish-kebab Modification and potential application of short-chain-length
formation and control of chain degradation in sheared poly(l- polyhydroxyalkanoate (SCL-PHA). Polymers. 2016;8(8):1-28.
lactic acid). ACS Sustain Chem Eng. 2015;3(7):1443-1452. doi: 10.3390/polym8080273
doi: 10.1021/acssuschemeng.5b00320
81. Thomas S, Sarathchandran C, Chandran N. Rheology of
70. Farrag Y, Barral L, Gualillo O, et al. Effect of different plasticizers Polymer Blends and Nanocomposites: Theory, Modelling and
on thermal, crystalline, and permeability properties of Applications. Elsevier. 2019.
poly(3–hydroxybutyrate–co−3–hydroxyhexanoate) films.
Polymers. 2022;14(17):1-14. 82. Arrigo R, Bartoli M, Malucelli G. Poly(lactic acid)-biochar
doi: 10.3390/polym14173503 biocomposites: Effect of processing and filler content on
Volume 10 Issue 1 (2024) 292 https://doi.org/10.36922/ijb.0156

