Page 300 - IJB-10-1
P. 300

International Journal of Bioprinting                       Scaffolds manufacturing by fused deposition modeling




               deposition modelling: Effect of process parameters on   71.  Watai JS, Calvão PS, Rigolin TR, do Prado Bettini SH, Souza
               mechanical properties and  their optimal selection.  Mater   AMC. Retardation effect of nanohydroxyapatite on the
               Design. 2017;124(1):143-157.                       hydrolytic degradation of poly (lactic acid). Polym Eng Sci.
               doi: 10.1016/j.matdes.2017.03.065                  2020;60(9):2152-2162.
                                                                  doi: 10.1002/pen.25459
            61.  Kiendl J, Gao C. Controlling toughness and strength of
               FDM 3D-printed PLA components through the raster layup.   72.  Garcia Gonçalves LM, Rigolin TR, Frenhe BM, Bettini SHP.
               Compos B Eng. 2020;180(1):1-6.                     On the recycling of a biodegradable polymer: Multiple
               doi: 10.1016/j.compositesb.2019.107562             extrusion of poly (lactic acid). Mater Res. 2020;23(5):1-7.
            62.  Zhou M, Zhou X, Si L, Chen P. Modeling of bonding      doi: 10.1590/1980-5373-MR-2020-0274
               strength for fused filament fabrication considering bonding   73.  Chaitanya S, Singh I, Song JI. Recyclability analysis of PLA/
               interface evolution and molecular diffusion. J Manuf Process.   sisal fiber biocomposites. Compos B Eng. 2019;173(1):1-9.
               2021;68(1):1485-1494.                              doi: 10.1016/j.compositesb.2019.05.106
               doi: 10.1016/j.jmapro.2021.06.064
                                                               74.  Touati  N,  Kaci  M,  Bruzaud  S,  Grohens  Y.  The  effects  of
            63.  Santo J, Penumakala PK, Adusumalli RB. Mechanical and   reprocessing  cycles  on  the  structure  and  properties  of
               electrical properties of three-dimensional printed polylactic   isotactic polypropylene/cloisite 15A nanocomposites. Polym
               acid–graphene–carbon nanofiber composites.  Polym   Degrad Stab. 2011;96(6):1064-1073.
               Compos. 2021;42(7):3231-3242.                      doi: 10.1016/j.polymdegradstab.2011.03.015
               doi: 10.1002/pc.26053
                                                               75.  Agüero A, Morcillo MC, Quiles-Carrillo L, et al. Study of the
            64.  Singh S, Singh G, Prakash C, Ramakrishna S. Current status   influence of the reprocessing cycles on the final properties of
               and future directions of fused filament fabrication. J Manuf   polylactide pieces obtained by injection molding. Polymers.
               Process. 2020;55(1):288-306.                       2019;11(12):1-21.
               doi: 10.1016/j.jmapro.2020.04.049                  doi: 10.3390/polym11121908
            65.  Ecker JV, Haider A, Burzic I, Huber A, Eder G, Hild S.   76.  Majerczak K, Wadkin-Snaith D, Magueijo V, Mulheran
               Mechanical properties and water absorption behavior of   P, Liggat J, Johnston K. Polyhydroxybutyrate: A review of
               PLA and PLA/wood composites prepared by 3D printing   experimental and simulation studies of the effect of fillers
               and injection moulding. Rapid Prototyp J. 2019;25(4):672-  on crystallinity and mechanical properties.  Polym Int.
               678.                                               2022;71(12):1398-1408.
               doi: 10.1108/RPJ-06-2018-0149
                                                                  doi: 10.1002/pi.6402
            66.  Cisneros-López  EO,  Pal  AK,  Rodriguez  AU,  et  al.
               Recycled poly(lactic acid)–based 3D printed sustainable   77.  Trakoolwannachai V, Kheolamai P, Ummartyotin S.
               biocomposites: A comparative study with injection molding.   Characterization of hydroxyapatite from eggshell waste and
               Mater Today Sustain. 2020;7-8(1):1-12.             polycaprolactone (PCL)  composite for scaffold material.
               doi: 10.1016/j.mtsust.2019.100027                  Compos B Eng. 2019;173(1):1-7.
                                                                  doi: 10.1016/j.compositesb.2019.106974
            67.  Lay M, Thajudin NLN, Hamid ZAA, Rusli A. Comparison of
               physical and mechanical properties of PLA, ABS and nylon   78.  Martín-Alfonso JE, Franco JM. Influence of polymer
               6 fabricated using fused deposition modeling and injection   reprocessing cycles on the microstructure and rheological
               molding. Compos B Eng. 2019;176(1):107341.         behavior of polypropylene/mineral oil oleogels. Polym Test.
               doi: 10.1016/j.compositesb.2019.107341             2015;45(1):12-19.
                                                                  doi: 10.1016/j.polymertesting.2015.04.016
            68.  Komal UK, Kasaudhan BK, Singh I. Comparative   79.  Dhar P, Tarafder D, Kumar A, Katiyar V. Effect of cellulose
               performance analysis of polylactic acid parts fabricated by   nanocrystal polymorphs on mechanical, barrier and thermal
               3D printing and injection molding.  J Mater Eng Perform.   properties of poly(lactic acid) based bionanocomposites.
               2021;30(9):6522-6528.                              RSC Adv. 2015;5(74):60426-60440.
               doi: 10.1007/s11665-021-05889-9                    doi: 10.1039/c5ra06840a
            69.  Xu H, Xie L, Hakkarainen M. Beyond a model of polymer   80.  Wang S, Chen W, Xiang H, Yang J, Zhou Z, Zhu M.
               processing-triggered  shear:  Reconciling  shish-kebab  Modification and potential application of short-chain-length
               formation and control of chain degradation in sheared poly(l-  polyhydroxyalkanoate (SCL-PHA). Polymers. 2016;8(8):1-28.
               lactic acid). ACS Sustain Chem Eng. 2015;3(7):1443-1452.     doi: 10.3390/polym8080273
               doi: 10.1021/acssuschemeng.5b00320
                                                               81.  Thomas S, Sarathchandran C, Chandran N.  Rheology of
            70.  Farrag Y, Barral L, Gualillo O, et al. Effect of different plasticizers   Polymer Blends and Nanocomposites: Theory, Modelling and
               on thermal, crystalline, and permeability properties of   Applications. Elsevier. 2019.
               poly(3–hydroxybutyrate–co−3–hydroxyhexanoate) films.
               Polymers. 2022;14(17):1-14.                     82.  Arrigo R, Bartoli M, Malucelli G. Poly(lactic acid)-biochar
               doi: 10.3390/polym14173503                         biocomposites: Effect of processing and filler content on

            Volume 10 Issue 1 (2024)                       292                        https://doi.org/10.36922/ijb.0156
   295   296   297   298   299   300   301   302   303   304   305