Page 402 - IJB-10-1
P. 402

International Journal of Bioprinting                                    In situ bioprinting for cartilage repair




            9.   Sang S, Mao X, Cao Y, et al. 3D Bioprinting using synovium-  21.  Moncal KK, Yeo M, Celik N,  et al. Comparison of  in-
               derived MSC-laden photo-cross-linked ECM bioink    situ versus  ex-situ delivery of polyethylenimine-BMP-2
               for cartilage regeneration.  ACS Appl Mater Interfaces.   polyplexes for rat calvarial defect repair via intraoperative
               2023;15(7):8895-8913.                              bioprinting. Biofabrication. 2022;15(1).
               doi: 10.1021/acsami.2c19058                        doi: 10.1088/1758-5090/ac9f70
            10.  Costa J, Silva-Correia J, Pina S,  et al. Indirect printing of   22.  Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld
               hierarchical  patient-specific  scaffolds  for  meniscus  tissue   three-dimensional bioprinting for cartilage regeneration. J
               engineering. Bio-Des Manuf. 2019;2(4):225-241.     Tissue Eng Regen Med. 2018;12(3):611-621.
               doi: 10.1007/s42242-019-00050-x                    doi: 10.1002/term.2476
            11.  Zou Q, Grottkau BE, He Z, et al. Biofabrication of valentine-  23.  Ma K, Zhao T, Yang L,  et al. Application of robotic-
               shaped heart with a composite hydrogel and sacrificial material.   assisted in situ 3D printing in cartilage regeneration with
               Mater Sci Eng C Mater Biol Appl. 2020;108:110205.   HAMA hydrogel: An in vivo study.  J Adv Res. 2020;23:
               doi: 10.1016/j.msec.2019.110205                    123-132.
                                                                  doi: 10.1016/j.jare.2020.01.010
            12.  MacAdam A, Chaudry E, McTiernan CD,  Cortes  D,
               Suuronen EJ, Alarcon EI. Development of in situ bioprinting:   24.  Wang Y, Pereira RF, Peach C, Huang B, Vyas C, Bartolo P.
               A mini review. Front Bioeng Biotechnol. 2022;10:940896.   Robotic in situ bioprinting for cartilage tissue engineering.
               doi: 10.3389/fbioe.2022.940896                     Int J Extreme Manuf. 2023;5(3).
                                                                  doi: 10.1016/j.jare.2020.01.010
            13.  Mahmoudi Z, Sedighi M, Jafari A, et al. In situ 3D bioprinting:
               A promising technique in advanced biofabrication strategies.   25.  Li L, Shi J, Ma K,  et al. Robotic in situ 3D bio-printing
               Bioprinting. 2023;e00260.                          technology for repairing large segmental bone defects. J Adv
               doi: 10.1016/j.bprint.2023.e00260                  Res. 2021;30:75-84.
                                                                  doi: 10.1016/j.jare.2020.11.011
            14.  Zhao W, Hu C, Xu T. In vivo bioprinting: Broadening
               the therapeutic horizon for tissue injuries.  Bioact Mater.   26.  Gholami P, Ahmadi-Pajouh MA, Abolftahi N,  et al.
               2023;25:201-222.                                   Segmentation and measurement of chronic wounds for
               doi: 10.1016/j.bioactmat.2023.01.018               bioprinting.  IEEE J Biomed Health Inform. 2018;22(4):
                                                                  1269-1277.
            15.  Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage defects
               using 3D scanning and 3D printing. Sci Rep. 2017;7(1):9416.      doi: 10.1109/jbhi.2017.2743526
               doi: 10.1038/s41598-017-10060-3                 27.  Lankton S, Tannenbaum A. Localizing region-based active
                                                                  contours. IEEE Trans Image Process. 2008;17(11):2029-2039.
            16.  O’Connell CD, Di Bella C, Thompson F, et al. Development
               of the Biopen: A handheld device for surgical printing of      doi: 10.1109/TIP.2008.2004611
               adipose stem cells at a chondral wound site. Biofabrication.   28.  Yu Y, Wang C, Fu Q,  et al. Techniques and challenges of
               2016;8(1):015019.                                  image segmentation: A review. Electronics. 2023;12(5).
               doi: 10.1088/1758-5090/8/1/015019                  doi: 10.3390/electronics12051199
            17.  Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: In   29.  Dexter A, Race AM, Steven RT,  et al. Two-phase and
               situ formation of planar biomaterials and tissues. Lab Chip.   graph-based clustering methods for accurate and efficient
               2018;18(10):1440-1451.                             segmentation of large mass spectrometry images.  Anal
               doi: 10.1039/c7lc01236e                            Chem. 2017;89(21):11293-11300.
                                                                  doi: 10.1021/acs.analchem.7b01758
            18.  Chen H, Ma X, Gao T, Zhao W, Xu T, Liu Z. Robot-assisted
               in situ bioprinting of gelatin methacrylate hydrogels with   30.  Shi H, Lee W. Image segmentation using K-means clustering,
               stem cells induces hair follicle-inclusive skin regeneration.   Gabor filter and moving mesh method. Imaging Sci J. 2023;
               Biomed Pharmacother. 2023;158:114140.              69(5-8):407-416.
               doi: 10.1016/j.biopha.2022.114140                  doi: 10.1080/13682199.2022.2161159
            19.  Moncal K, Gudapati H, Godzik P,  et al. Intra-operative   31.  Zhang F, Sun Z, Song M,  Lang X. Progressive 3D shape
               bioprinting of hard, soft, and hard/soft composite tissues   segmentation using online learning. Comput Aided Design.
               for craniomaxillofacial reconstruction.  Adv Funct. Mater.   2015;58:2-12.
               2021;31(29).                                       doi: 10.1016/j.cad.2014.08.008
               doi: 10.1002/adfm.202010858
                                                               32.  Niri R, Gutierrez E, Douzi H,  et al. Multi-view data
            20.  Ozbolat  IT,  Chen  H,  Yu  Y.  Development  of  ‘multi-arm   augmentation to improve wound segmentation on 3D
               bioprinter’ for hybrid biofabrication of tissue engineering   surface model by deep learning.  IEEE Access.  2021;9:
               constructs. Rob Comput Integr Manuf. 2014;30(3):295-304.   157628-157638.
               doi: 10.1016/j.rcim.2013.10.005                    doi: 10.1109/ACCESS.2021.3130784




            Volume 10 Issue 1 (2024)                       394                          https://doi.org/10.36922/ijb.1437
   397   398   399   400   401   402   403   404   405   406   407