Page 402 - IJB-10-1
P. 402
International Journal of Bioprinting In situ bioprinting for cartilage repair
9. Sang S, Mao X, Cao Y, et al. 3D Bioprinting using synovium- 21. Moncal KK, Yeo M, Celik N, et al. Comparison of in-
derived MSC-laden photo-cross-linked ECM bioink situ versus ex-situ delivery of polyethylenimine-BMP-2
for cartilage regeneration. ACS Appl Mater Interfaces. polyplexes for rat calvarial defect repair via intraoperative
2023;15(7):8895-8913. bioprinting. Biofabrication. 2022;15(1).
doi: 10.1021/acsami.2c19058 doi: 10.1088/1758-5090/ac9f70
10. Costa J, Silva-Correia J, Pina S, et al. Indirect printing of 22. Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld
hierarchical patient-specific scaffolds for meniscus tissue three-dimensional bioprinting for cartilage regeneration. J
engineering. Bio-Des Manuf. 2019;2(4):225-241. Tissue Eng Regen Med. 2018;12(3):611-621.
doi: 10.1007/s42242-019-00050-x doi: 10.1002/term.2476
11. Zou Q, Grottkau BE, He Z, et al. Biofabrication of valentine- 23. Ma K, Zhao T, Yang L, et al. Application of robotic-
shaped heart with a composite hydrogel and sacrificial material. assisted in situ 3D printing in cartilage regeneration with
Mater Sci Eng C Mater Biol Appl. 2020;108:110205. HAMA hydrogel: An in vivo study. J Adv Res. 2020;23:
doi: 10.1016/j.msec.2019.110205 123-132.
doi: 10.1016/j.jare.2020.01.010
12. MacAdam A, Chaudry E, McTiernan CD, Cortes D,
Suuronen EJ, Alarcon EI. Development of in situ bioprinting: 24. Wang Y, Pereira RF, Peach C, Huang B, Vyas C, Bartolo P.
A mini review. Front Bioeng Biotechnol. 2022;10:940896. Robotic in situ bioprinting for cartilage tissue engineering.
doi: 10.3389/fbioe.2022.940896 Int J Extreme Manuf. 2023;5(3).
doi: 10.1016/j.jare.2020.01.010
13. Mahmoudi Z, Sedighi M, Jafari A, et al. In situ 3D bioprinting:
A promising technique in advanced biofabrication strategies. 25. Li L, Shi J, Ma K, et al. Robotic in situ 3D bio-printing
Bioprinting. 2023;e00260. technology for repairing large segmental bone defects. J Adv
doi: 10.1016/j.bprint.2023.e00260 Res. 2021;30:75-84.
doi: 10.1016/j.jare.2020.11.011
14. Zhao W, Hu C, Xu T. In vivo bioprinting: Broadening
the therapeutic horizon for tissue injuries. Bioact Mater. 26. Gholami P, Ahmadi-Pajouh MA, Abolftahi N, et al.
2023;25:201-222. Segmentation and measurement of chronic wounds for
doi: 10.1016/j.bioactmat.2023.01.018 bioprinting. IEEE J Biomed Health Inform. 2018;22(4):
1269-1277.
15. Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage defects
using 3D scanning and 3D printing. Sci Rep. 2017;7(1):9416. doi: 10.1109/jbhi.2017.2743526
doi: 10.1038/s41598-017-10060-3 27. Lankton S, Tannenbaum A. Localizing region-based active
contours. IEEE Trans Image Process. 2008;17(11):2029-2039.
16. O’Connell CD, Di Bella C, Thompson F, et al. Development
of the Biopen: A handheld device for surgical printing of doi: 10.1109/TIP.2008.2004611
adipose stem cells at a chondral wound site. Biofabrication. 28. Yu Y, Wang C, Fu Q, et al. Techniques and challenges of
2016;8(1):015019. image segmentation: A review. Electronics. 2023;12(5).
doi: 10.1088/1758-5090/8/1/015019 doi: 10.3390/electronics12051199
17. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: In 29. Dexter A, Race AM, Steven RT, et al. Two-phase and
situ formation of planar biomaterials and tissues. Lab Chip. graph-based clustering methods for accurate and efficient
2018;18(10):1440-1451. segmentation of large mass spectrometry images. Anal
doi: 10.1039/c7lc01236e Chem. 2017;89(21):11293-11300.
doi: 10.1021/acs.analchem.7b01758
18. Chen H, Ma X, Gao T, Zhao W, Xu T, Liu Z. Robot-assisted
in situ bioprinting of gelatin methacrylate hydrogels with 30. Shi H, Lee W. Image segmentation using K-means clustering,
stem cells induces hair follicle-inclusive skin regeneration. Gabor filter and moving mesh method. Imaging Sci J. 2023;
Biomed Pharmacother. 2023;158:114140. 69(5-8):407-416.
doi: 10.1016/j.biopha.2022.114140 doi: 10.1080/13682199.2022.2161159
19. Moncal K, Gudapati H, Godzik P, et al. Intra-operative 31. Zhang F, Sun Z, Song M, Lang X. Progressive 3D shape
bioprinting of hard, soft, and hard/soft composite tissues segmentation using online learning. Comput Aided Design.
for craniomaxillofacial reconstruction. Adv Funct. Mater. 2015;58:2-12.
2021;31(29). doi: 10.1016/j.cad.2014.08.008
doi: 10.1002/adfm.202010858
32. Niri R, Gutierrez E, Douzi H, et al. Multi-view data
20. Ozbolat IT, Chen H, Yu Y. Development of ‘multi-arm augmentation to improve wound segmentation on 3D
bioprinter’ for hybrid biofabrication of tissue engineering surface model by deep learning. IEEE Access. 2021;9:
constructs. Rob Comput Integr Manuf. 2014;30(3):295-304. 157628-157638.
doi: 10.1016/j.rcim.2013.10.005 doi: 10.1109/ACCESS.2021.3130784
Volume 10 Issue 1 (2024) 394 https://doi.org/10.36922/ijb.1437

