Page 403 - IJB-10-1
P. 403

International Journal of Bioprinting                                    In situ bioprinting for cartilage repair




            33.  Lei H, Song C, Liu Z,  et al. Rational design and additive   45.  Agarwal G, Agiwa S, Srivastava A. Hyaluronic acid
               manufacturing of alumina-based lattice structures for bone   containing  scaffolds  ameliorate  stem  cell  function  for
               implant. Mater Design. 2022;221.                   tissue repair and regeneration.  Int J Biol Macromol. 2020;
               doi: 10.1016/j.matdes.2022.111003                  165(Pt A):388-401.
                                                                  doi: 10.1016/j.ijbiomac.2020.09.107
            34.  Mathworks, Computer Vision Toolbox, https://ww2.
               mathworks.cn/help/vision/index                  46.  Amann E, Wolff P, Breel E,  van Griensven M, Balmayor
            35.  Murdock M, Badylak S. Biomaterials-based in situ tissue   ER. Hyaluronic acid facilitates chondrogenesis and matrix
               engineering. Curr Opin Biomed Eng. 2017;1:4-7.     deposition of human adipose derived mesenchymal stem
               doi: 10.1016%2Fj.cobme.2017.01.001                 cells and human chondrocytes co-cultures. Acta Biomater.
                                                                  2017;52:130-144.
            36.  Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ      doi: 10.1016/j.ijbiomac.2020.09.107
               bioprinting - Bioprinting from benchside to bedside? Acta
               Biomater. 2020;101:14-25.                       47.  da Silva LP, Santos T, Rodrigues D,  et al. Stem cell-
               doi: 10.1016/j.actbio.2019.08.045                  containing hyaluronic acid-based spongy hydrogels for
                                                                  integrated diabetic wound healing.  J Invest Dermatol.
            37.  Richter F, Lu J, Orosco RK, Yip MC. Robotic tool tracking   2017;137(7):1541-1551.
               under partially visible kinematic chain: A unified approach.      doi: 10.1016/j.jid.2017.02.976
               IEEE Trans Rob. 2022;38(3):1653-1670.
               doi: 10.48550/arXiv.2102.06235                  48.  Agrawal P, Pramanik K, Vishwanath V,  et al. Enhanced
                                                                  chondrogenesis of mesenchymal stem cells over silk fibroin/
            38.  Feng L, Zhang W, Gong Z, Lin G, Liang D. Developments of   chitosan-chondroitin sulfate three dimensional scaffold
               delta-like parallel manipulators - A review. Robot (China).   in dynamic culture condition. J Biomed Mater Res B Appl
               2014; 36(3):375-384.                               Biomater. 2018;106(7):2576-2587.
               doi: 10.5772/61744                                 doi: 10.1002/jbm.b.34074
            39.  Dong H, Hu B, Zhang W, et al. Robotic-assisted automated   49.  Lafuente-Merchan M, Ruiz-Alonso S, Zabala A,  et al.
               in situ bioprinting. Int J Bioprint. 2023;9(1):629.   Chondroitin  and  dermatan  sulfate  bioinks  for  3D
               doi: 10.18063%2Fijb.v9i1.629                       bioprinting and cartilage regeneration.  Macromol Biosci.
            40.  Gao Q, Niu X, Shao L,  et al. 3D printing of complex   2022;22(3):e2100435.
               GelMA-based  scaffolds  with  nanoclay.  Biofabrication.      doi: 10.1002/mabi.202100435
               2019;11(3):035006.                              50.  Tan G, Tabata Y. Chondroitin-6-sulfate attenuates
               doi: 10.1088/1758-5090/ab0cf6                      inflammatory responses in murine macrophages via
            41.  Fritz R, Chaudhari A, Boutin R. Preoperative MRI of   suppression of NF-kappaB nuclear translocation.  Acta
               articular cartilage in the knee: A practical approach. J Knee   Biomater. 2014;10(6):2684-2692.
               Surg. 2020;33(11):1088-1099.                       doi: 10.1016/j.actbio.2014.02.025
               doi: 10.1055/s-0040-1716719                     51.  Wang D, Varghese S, Sharma B,  et al. Multifunctional
            42.  Potter H, Black B, Chong le R. New techniques in articular   chondroitin  sulphate  for  cartilage  tissue-
               cartilage imaging. Clin Sports Med. 2009;28(1):77-94.    biomaterial  integration.  Nat  Mater.  2007;6(5):
               doi: 10.4103%2F0971-3026.137028                    385-392.
                                                                  doi: 10.1038/nmat1890
            43.  Chen X, Jiang C, Wang T, Zhu T, Li X, Huang J. Hyaluronic acid-
               based biphasic scaffold with layer-specific induction capacity for   52.  Kwon H, Brown W, Lee C,  et al. Surgical and tissue
               osteochondral defect regeneration. Mater Des. 2022;216.    engineering strategies for articular cartilage and meniscus
               doi: 10.1016/j.matdes.2022.110550                  repair. Nat Rev Rheumatol. 2019;15(9):550-570.
                                                                  doi: 10.1038%2Fs41584-019-0255-1
            44.  Schuurmans C, Mihajlovic M, Hiemstra C, Ito K, Hennink
               WE, Vermonden T. Hyaluronic acid and chondroitin sulfate   53.  Trengove  A, Di  Bella  C, O’Connor  A. The  challenge  of
               (meth)acrylate-based hydrogels for tissue engineering:   cartilage integration: Understanding a major barrier
               Synthesis, characteristics and pre-clinical evaluation.   to chondral repair.  Tissue Eng Part B Rev. 2022;28(1):
               Biomaterials. 2021;268:120602.                     114-128.
               doi: 10.1016/j.biomaterials.2020.120602            doi: 10.1089/ten.teb.2020.0244












            Volume 10 Issue 1 (2024)                       395                          https://doi.org/10.36922/ijb.1437
   398   399   400   401   402   403   404   405   406   407   408