Page 403 - IJB-10-1
P. 403
International Journal of Bioprinting In situ bioprinting for cartilage repair
33. Lei H, Song C, Liu Z, et al. Rational design and additive 45. Agarwal G, Agiwa S, Srivastava A. Hyaluronic acid
manufacturing of alumina-based lattice structures for bone containing scaffolds ameliorate stem cell function for
implant. Mater Design. 2022;221. tissue repair and regeneration. Int J Biol Macromol. 2020;
doi: 10.1016/j.matdes.2022.111003 165(Pt A):388-401.
doi: 10.1016/j.ijbiomac.2020.09.107
34. Mathworks, Computer Vision Toolbox, https://ww2.
mathworks.cn/help/vision/index 46. Amann E, Wolff P, Breel E, van Griensven M, Balmayor
35. Murdock M, Badylak S. Biomaterials-based in situ tissue ER. Hyaluronic acid facilitates chondrogenesis and matrix
engineering. Curr Opin Biomed Eng. 2017;1:4-7. deposition of human adipose derived mesenchymal stem
doi: 10.1016%2Fj.cobme.2017.01.001 cells and human chondrocytes co-cultures. Acta Biomater.
2017;52:130-144.
36. Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ doi: 10.1016/j.ijbiomac.2020.09.107
bioprinting - Bioprinting from benchside to bedside? Acta
Biomater. 2020;101:14-25. 47. da Silva LP, Santos T, Rodrigues D, et al. Stem cell-
doi: 10.1016/j.actbio.2019.08.045 containing hyaluronic acid-based spongy hydrogels for
integrated diabetic wound healing. J Invest Dermatol.
37. Richter F, Lu J, Orosco RK, Yip MC. Robotic tool tracking 2017;137(7):1541-1551.
under partially visible kinematic chain: A unified approach. doi: 10.1016/j.jid.2017.02.976
IEEE Trans Rob. 2022;38(3):1653-1670.
doi: 10.48550/arXiv.2102.06235 48. Agrawal P, Pramanik K, Vishwanath V, et al. Enhanced
chondrogenesis of mesenchymal stem cells over silk fibroin/
38. Feng L, Zhang W, Gong Z, Lin G, Liang D. Developments of chitosan-chondroitin sulfate three dimensional scaffold
delta-like parallel manipulators - A review. Robot (China). in dynamic culture condition. J Biomed Mater Res B Appl
2014; 36(3):375-384. Biomater. 2018;106(7):2576-2587.
doi: 10.5772/61744 doi: 10.1002/jbm.b.34074
39. Dong H, Hu B, Zhang W, et al. Robotic-assisted automated 49. Lafuente-Merchan M, Ruiz-Alonso S, Zabala A, et al.
in situ bioprinting. Int J Bioprint. 2023;9(1):629. Chondroitin and dermatan sulfate bioinks for 3D
doi: 10.18063%2Fijb.v9i1.629 bioprinting and cartilage regeneration. Macromol Biosci.
40. Gao Q, Niu X, Shao L, et al. 3D printing of complex 2022;22(3):e2100435.
GelMA-based scaffolds with nanoclay. Biofabrication. doi: 10.1002/mabi.202100435
2019;11(3):035006. 50. Tan G, Tabata Y. Chondroitin-6-sulfate attenuates
doi: 10.1088/1758-5090/ab0cf6 inflammatory responses in murine macrophages via
41. Fritz R, Chaudhari A, Boutin R. Preoperative MRI of suppression of NF-kappaB nuclear translocation. Acta
articular cartilage in the knee: A practical approach. J Knee Biomater. 2014;10(6):2684-2692.
Surg. 2020;33(11):1088-1099. doi: 10.1016/j.actbio.2014.02.025
doi: 10.1055/s-0040-1716719 51. Wang D, Varghese S, Sharma B, et al. Multifunctional
42. Potter H, Black B, Chong le R. New techniques in articular chondroitin sulphate for cartilage tissue-
cartilage imaging. Clin Sports Med. 2009;28(1):77-94. biomaterial integration. Nat Mater. 2007;6(5):
doi: 10.4103%2F0971-3026.137028 385-392.
doi: 10.1038/nmat1890
43. Chen X, Jiang C, Wang T, Zhu T, Li X, Huang J. Hyaluronic acid-
based biphasic scaffold with layer-specific induction capacity for 52. Kwon H, Brown W, Lee C, et al. Surgical and tissue
osteochondral defect regeneration. Mater Des. 2022;216. engineering strategies for articular cartilage and meniscus
doi: 10.1016/j.matdes.2022.110550 repair. Nat Rev Rheumatol. 2019;15(9):550-570.
doi: 10.1038%2Fs41584-019-0255-1
44. Schuurmans C, Mihajlovic M, Hiemstra C, Ito K, Hennink
WE, Vermonden T. Hyaluronic acid and chondroitin sulfate 53. Trengove A, Di Bella C, O’Connor A. The challenge of
(meth)acrylate-based hydrogels for tissue engineering: cartilage integration: Understanding a major barrier
Synthesis, characteristics and pre-clinical evaluation. to chondral repair. Tissue Eng Part B Rev. 2022;28(1):
Biomaterials. 2021;268:120602. 114-128.
doi: 10.1016/j.biomaterials.2020.120602 doi: 10.1089/ten.teb.2020.0244
Volume 10 Issue 1 (2024) 395 https://doi.org/10.36922/ijb.1437

