Page 464 - IJB-10-1
P. 464

International Journal of Bioprinting                         Efficacy of 3D-printed customized titanium implants




            2.   Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser   nonunion in a complex patient population.  Clin Orthop
               melting of Ti6A14V alloy for biomedical applications:   Relat Res. 2016;474(10):2280-2299.
               Temperature monitoring and microstructural evolution.       doi: 10.1007/s11999-016-4955-4
               J Alloys Compounds. 2014;583:404-409.
               doi: 10.1016/j.jallcom.2013.08.183              13.  McGarvey WC, Braly WG. Bone graft in hindfoot
                                                                  arthrodesis:  Allograft  vs  autograft.  Orthopedics.
            3.   Mehboob H, Tarlochan F, Mehboob A, et al. A novel design,   1996;19(5):389-394.
               analysis and 3D printing of Ti-6Al-4V alloy bio-inspired      doi: 10.3928/0147-7447-19960501-08
               porous femoral stem. J Mater Sci Mater Med. 2020;31(9):78.
               doi: 10.1007/s10856-020-06420-7                 14.  Mulligan RP, Adams SB Jr, Easley ME, DeOrio JK, Nunley
                                                                  JA. Comparison of posterior approach with intramedullary
            4.   Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic   nailing versus lateral transfibular approach with fixed-angle
               powder-bed based 3D printing of cellular scaffolds   plating for tibiotalocalcaneal arthrodesis.  Foot Ankle Int.
               for orthopaedic implants: A state-of-the-art review on   2017;38(12):1343-1351.
               manufacturing, topological  design,  mechanical properties      doi: 10.1177/1071100717731728
               and biocompatibility.  Mater Sci Eng C Mater Biol Appl.
               2017;76:1328-1343.                              15.  Fan J, Zhang X, Luo Y, You GW, Ng WK, Yang YF.
               doi: 10.1016/j.msec.2017.02.094                    Tibiotalocalcaneal (TTC) arthrodesis with reverse PHILOS
                                                                  plate and medial cannulated screws with lateral approach.
            5.   Giovinco NA, Dunn SP, Dowling L, et al. A novel   BMC Musculoskelet Disord. 2017;18(1):317.
               combination of printed 3‐dimensional anatomic templates      doi: 10.1186/s12891-017-1666-2
               and computer‐assisted surgical simulation for virtual
               preoperative planning in Charcot foot reconstruction. J Foot   16.  Kreulen C, Lian E, Giza E. Technique for use of trabecular
               Ankle Surg. 2012;51(3):387-393.                    metal spacers in tibiotalocalcaneal arthrodesis with large
               doi: 10.1053/j.jfas.2012.01.014                    bony defects. Foot Ankle Int. 2017;38(1):96-106.
                                                                  doi: 10.1177/1071100716681743
            6.   Cha YH, Lee KH, Ryu HJ, et al. Ankle-foot orthosis made by
               3D printing technique and automated design software. Appl   17.  Li X, Wang CT, Zhang WG, Li Y. Fabrication and
               Bionics Biomech. 2017; 9610468.                    characterization of porous Ti6Al4V parts for biomedical
               doi: 10.1155/2017/9610468                          applications using electron beam melting process.
                                                                  J Materials Letters. 2009;63:403-405.
            7.   Chung KJ, Hong DY, Kim YT, Yang Ik, Park YW, Kim      doi: 10.1016/j.matlet.2008.10.065
               HN. Preshaping plates for minimally invasive fixation of
               calcaneal fractures  using  a real‐size  3D‐printed  model   18.  Hrabe NW, Heinl P, Bordia RK, Körner C, Fernandes RJ.
               as a preoperative and intraoperative tool.  Foot Ankle Int.   Maintenance of a bone collagen phenotype by osteoblast-
               2014;35(11):1231-1236.                             like cells in 3D periodic porous titanium (Ti-6Al-4 V)
               doi: 10.1177/1071100714544522                      structures fabricated by selective electron beam melting.
                                                                  Connect Tissue Res. 2013;54(6):351-360.
            8.   Hamid KS, Parekh SG, Adams SB. Salvage of severe foot
               and ankle trauma with a 3D printed scaffold. Foot Ankle Int.      doi: 10.3109/03008207.2013.822864
               2016;37(4):433-439.                             19.  Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular
               doi: 10.1177/1071100715620895                      Ti-6Al-4V structures with interconnected macro porosity
            9.   Jastifer JR, Gustafson PA. Three-dimensional printing and   for bone implants fabricated by selective electron beam
               surgical simulation for preoperative planning of deformity   melting. Acta Biomater. 2008;4(5):1536-1544.
               correction in foot and ankle surgery.  J Foot Ankle Surg.      doi: 10.1016/j.actbio.2008.03.013
               2017;56(1):191-195.                             20.  Diment LE,  Thompson MS,  Bergmann  JHM.  Clinical
               doi: 10.1053/j.jfas.2016.01.052                    efficacy and effectiveness of 3D printing: A systematic
            10.  Ren X, Yang L, Duan XJ. Three‐dimensional printing in   review. BMJ Open. 2017;7(12):e016891.
               the surgical treatment of osteoid osteoma of the calcaneus:       doi: 10.1136/bmjopen-2017-016891
               A case report. J Int Med Res. 2017;45(1):372-380.  21.  Zheng W, Tao Z, Lou Y, et al. Comparison of the conventional
               doi: 10.1177/0300060516686514                      surgery and the surgery assisted by 3D printing technology
            11.  Li H, Qu X, Mao Y, Dai K, Zhu Z. Custom acetabular cages   in the treatment of calcaneal fractures.  J Invest Surg.
               offer stable fixation and improved hip scores for revision   2017;19:1-11.
               THA with severe bone defects.  Clin Orthop Relat Res.      doi: 10.1080/08941939.2017.1363833
               2016;474(3):731-740.                            22.  Ma H, Luo J, Sun Z, et al. 3D printing of biomaterials with
               doi: 10.1007/s11999-015-4587-0
                                                                  mussel-inspired nanostructures for tumor therapy and
            12.  Gorman TM, Beals TC, Nickisch F, et al. Hindfoot arthrodesis   tissue regeneration. Biomaterials. 2016;111:138-148.
               with  the  blade  plate: Increased  risk  of  complications  and      doi: 10.1016/j.biomaterials.2016.10.005



            Volume 10 Issue 1 (2024)                       456                        https://doi.org/10.36922/ijb.0125
   459   460   461   462   463   464   465   466   467   468   469