Page 95 - IJB-2-1
P. 95
Wen Shing Leong, Shu Cheng Wu, Kee Woei Ng, et al.
References 12. Rnjak-Kovacina J and Weiss A S, 2011, Increasing the
pore size of electrospun scaffolds. Tissue Engineering
1. Atala A, Thomson J A and Nerem R M, 2011, Principles Part B: Reviews, vol.17(5): 365–372.
nd
of Regenerative Medicine, 2 edn, Elsevier Inc. http://dx.doi.org/10.1089/ten.teb.2011.0235
2. Jayarama R V, Radhakrishnan S, Ravichandran R, et al., 13. Shim I K, Jung M R, Kim K H, et al., 2010, Novel
2013, Nanofibrous structured biomimetic strategies for three-dimensional scaffolds of poly(L-lactic acid) mi-
skin tissue regeneration. Wound Repair and Regenera- crofibers using electrospinning and mechanical expan-
tion, vol.21(1): 1–16. sion: Fabrication and bone regeneration. Journal of
http://dx.doi.org/10.1111/j.1524-475X.2012.00861.x Biomedical Materials Research Part B: Applied Bioma-
3. Metcalfe A D and Ferguson M W J, 2007, Tissue engi- terials, vol.95(1): 150–160.
neering of replacement skin: The crossroads of biomate- http://dx.doi.org/10.1002/jbm.b.31695
rials, wound healing, embryonic development, stem 14. Nam J, Huang Y, Agarwal S, et al., 2007, Improved cel-
cells and regeneration. Journal of The Royal Society In- lular infiltration in electrospun fiber via engineered po-
terface, vol.4(14): 413–417. rosity. Tissue Engineering, vol.13(9): 2249–2257.
http://dx.doi.org/10.1098/rsif.2006.0179 http://dx.doi.org/10.1089/ten.2006.0306
4. Xu C Y, Inai R, Kotaki M, et al., 2004, Aligned biode- 15. Balguid A, Mol A, van Marion M H, et al., 2009, Tai-
gradable nanofibrous structure: A potential scaffold loring fiber diameter in electrospun poly(ɛ-caprolactone)
for blood vessel engineering. Biomaterials, vol.25(5): scaffolds for optimal cellular infiltration in cardiovascu-
877–886. lar tissue engineering. Tissue Engineering Part A,
http://dx.doi.org/10.1016/S0142-9612(03)00593-3 vol.15(2): 437–444.
5. Barnes C P, Sell S A, Boland E D, et al., 2007, Nanofi- http://dx.doi.org/10.1089/ten.tea.2007.0294
ber technology: Designing the next generation of tissue 16. Baker B M, Gee A O, Metter R B, et al., 2008, The po-
engineering scaffolds. Advanced Drug Delivery Reviews, tential to improve cell infiltration in composite fiber-
vol.59(14): 1413–1433. aligned electrospun scaffolds by the selective removal of
http://dx.doi.org/10.1016/j.addr.2007.04.022 sacrificial fibers. Biomaterials, vol.29(15): 2348–2358.
6. Smith L A and Ma P X, 2004, Nano-fibrous scaffolds for http://dx.doi.org/10.1016/j.biomaterials.2008.01.032
tissue engineering. Colloids and Surfaces B: Biointer- 17. Guimaraes A, Martins A, Pinho E D, et al., 2010, Solv-
faces, vol.39(3): 125–131. ing cell infiltration limitations of electrospun nanofiber
http://dx.doi.org/10.1016/j.colsurfb.2003.12.004 meshes for tissue engineering applications. Nanomedi-
7. Powell H M, Supp D M and Boyce S T, 2008, Influence cine (London), vol.5(4): 539–554.
of electrospun collagen on wound contraction of engi- http://dx.doi.org/10.2217/nnm.10.31
neered skin substitutes. Biomaterials, vol.29(7): 834–843. 18. Simonet M, Schneider O D, Neuenschwander P, et al.,
http://dx.doi.org/10.1016/j.biomaterials.2007.10.036 2007, Ultraporous 3D polymer meshes by low-temper-
8. Ayres C E, Jha B S, Sell S A, et al., 2010, Nanotech- ature electrospinning: Use of ice crystals as a removable
nology in the design of soft tissue scaffolds: Innovations void template. Polymer Engineering and Science,
in structure and function. Wiley Interdisciplinary Reviews: vol.47(12): 2020–2026.
Nanomedicine and Nanobiotechnology, vol.2(1): 20–34. http://dx.doi.org/10.1002/pen.20914
http://dx.doi.org/10.1002/wnan.55 19. Pham Q P, Sharma U and Mikos A G, 2006, Electrospun
9. Lowery J L, Datta N and Rutledge G C, 2010, Effect of poly(ε-caprolactone) microfiber and multilayer nanofi-
fiber diameter, pore size and seeding method on growth ber/microfiber scaffolds: Characterization of scaffolds
of human dermal fibroblasts in electrospun poly(ɛ-cap- and measurement of cellular infiltration. Biomacromo-
rolactone) fibrous mats. Biomaterials, vol.31(3): 491–504. lecules, vol.7(10): 2796–2805.
http://dx.doi.org/10.1016/j.biomaterials.2009.09.072 http://dx.doi.org/10.1021/bm060680j
10. Gelain F, 2008, Novel opportunities and challenges of- 20. Soliman S, Pagliari S, Rinaldi A, et al., 2010, Multiscale
fered by nanobiomaterials in tissue engineering. Inter- three-dimensional scaffolds for soft tissue engineering
national Journal of Nanomedicine, vol.3(4): 415–424. via multimodal electrospinning. Acta Biomaterialia,
http://dx.doi.org/10.2147/IJN.S3795 vol.6(4): 1227–1237.
11. Zhong S P, Zhang Y Z and Lim C T, 2012, Fabrication http://dx.doi.org/10.1016/j.actbio.2009.10.051
of large pores in electrospun nanofibrous scaffolds for 21. Moroni L, Hamann D, Schotel R, et al., 2008, 3D fiber-
cellular infiltration: A review. Tissue Engineering Part B: deposited electrospun intergrated scaffolds enhance car-
Reviews, vol.18(2): 77–87. tilage tissue formation. Advanced Functional Materials,
http://dx.doi.org/10.1089/ten.TEB.2011.0390 vol.18(1): 53–60.
International Journal of Bioprinting (2016)–Volume 2, Issue 1 91

