Page 95 - IJB-2-1
P. 95

Wen Shing Leong, Shu Cheng Wu, Kee Woei Ng, et al.

            References                                          12.  Rnjak-Kovacina J and Weiss A S, 2011, Increasing the
                                                                    pore size of electrospun  scaffolds.  Tissue Engineering
              1.   Atala A, Thomson J A and Nerem R M, 2011, Principles   Part B: Reviews, vol.17(5): 365–372.
                                      nd
                 of Regenerative Medicine, 2  edn, Elsevier Inc.    http://dx.doi.org/10.1089/ten.teb.2011.0235
              2.   Jayarama R V, Radhakrishnan S, Ravichandran R, et al.,   13.  Shim I K, Jung  M R,  Kim K  H,  et al.,  2010, Novel
                 2013, Nanofibrous structured biomimetic strategies for   three-dimensional scaffolds of poly(L-lactic acid) mi-
                 skin  tissue regeneration.  Wound Repair and Regenera-  crofibers using electrospinning and mechanical expan-
                 tion, vol.21(1): 1–16.                             sion: Fabrication and  bone regeneration.  Journal of
                 http://dx.doi.org/10.1111/j.1524-475X.2012.00861.x   Biomedical Materials Research Part B: Applied Bioma-
              3.   Metcalfe A D and Ferguson M W J, 2007, Tissue engi-  terials, vol.95(1): 150–160.
                 neering of replacement skin: The crossroads of biomate-  http://dx.doi.org/10.1002/jbm.b.31695
                 rials, wound healing,  embryonic development,  stem   14.  Nam J, Huang Y, Agarwal S, et al., 2007, Improved cel-
                 cells and regeneration. Journal of The Royal Society In-  lular infiltration in electrospun fiber via engineered po-
                 terface, vol.4(14): 413–417.                       rosity. Tissue Engineering, vol.13(9): 2249–2257.
                 http://dx.doi.org/10.1098/rsif.2006.0179           http://dx.doi.org/10.1089/ten.2006.0306
              4.   Xu C Y, Inai R, Kotaki M, et al., 2004, Aligned biode-  15.  Balguid A, Mol A, van Marion M H, et al., 2009, Tai-
                 gradable  nanofibrous  structure:  A  potential  scaffold   loring fiber diameter in electrospun poly(ɛ-caprolactone)
                 for blood vessel engineering.  Biomaterials, vol.25(5):   scaffolds for optimal cellular infiltration in cardiovascu-
                 877–886.                                           lar  tissue  engineering.  Tissue  Engineering  Part  A,
                 http://dx.doi.org/10.1016/S0142-9612(03)00593-3    vol.15(2): 437–444.
              5.   Barnes C P, Sell S A, Boland E D, et al., 2007, Nanofi-  http://dx.doi.org/10.1089/ten.tea.2007.0294
                 ber technology: Designing the next generation of tissue   16.  Baker B M, Gee A O, Metter R B, et al., 2008, The po-
                 engineering scaffolds. Advanced Drug Delivery Reviews,   tential to  improve cell  infiltration  in composite fiber-
                 vol.59(14): 1413–1433.                             aligned electrospun scaffolds by the selective removal of
                 http://dx.doi.org/10.1016/j.addr.2007.04.022       sacrificial fibers. Biomaterials, vol.29(15): 2348–2358.
              6.   Smith L A and Ma P X, 2004, Nano-fibrous scaffolds for   http://dx.doi.org/10.1016/j.biomaterials.2008.01.032
                 tissue engineering.  Colloids and Surfaces B: Biointer-  17.  Guimaraes A, Martins A, Pinho E D, et al., 2010, Solv-
                 faces, vol.39(3): 125–131.                         ing cell infiltration limitations of electrospun nanofiber
                 http://dx.doi.org/10.1016/j.colsurfb.2003.12.004   meshes for  tissue engineering  applications.  Nanomedi-
              7.   Powell H M, Supp D M and Boyce S T, 2008, Influence   cine (London), vol.5(4): 539–554.
                 of  electrospun  collagen on wound contraction of engi-  http://dx.doi.org/10.2217/nnm.10.31
                 neered skin substitutes. Biomaterials, vol.29(7): 834–843.   18.  Simonet M, Schneider O D, Neuenschwander P, et al.,
                 http://dx.doi.org/10.1016/j.biomaterials.2007.10.036   2007, Ultraporous 3D polymer meshes by low-temper-
              8.   Ayres C E, Jha B S, Sell S A, et al., 2010, Nanotech-  ature electrospinning: Use of ice crystals as a removable
                 nology in the design of soft tissue scaffolds: Innovations   void  template.  Polymer  Engineering  and  Science,
                 in structure and function. Wiley Interdisciplinary Reviews:   vol.47(12): 2020–2026.
                 Nanomedicine and Nanobiotechnology, vol.2(1): 20–34.   http://dx.doi.org/10.1002/pen.20914
                 http://dx.doi.org/10.1002/wnan.55              19.  Pham Q P, Sharma U and Mikos A G, 2006, Electrospun
              9.   Lowery J L, Datta N and Rutledge G C, 2010, Effect of   poly(ε-caprolactone) microfiber and  multilayer nanofi-
                 fiber diameter, pore size and seeding method on growth   ber/microfiber scaffolds:  Characterization of scaffolds
                 of human dermal fibroblasts in electrospun poly(ɛ-cap-  and  measurement of cellular infiltration.  Biomacromo-
                 rolactone) fibrous mats. Biomaterials, vol.31(3): 491–504.   lecules, vol.7(10): 2796–2805.
                 http://dx.doi.org/10.1016/j.biomaterials.2009.09.072   http://dx.doi.org/10.1021/bm060680j
              10.  Gelain F, 2008, Novel opportunities and challenges of-  20.  Soliman S, Pagliari S, Rinaldi A, et al., 2010, Multiscale
                 fered  by nanobiomaterials in tissue engineering.  Inter-  three-dimensional scaffolds for  soft tissue engineering
                 national Journal of Nanomedicine, vol.3(4): 415–424.   via multimodal electrospinning.  Acta Biomaterialia,
                 http://dx.doi.org/10.2147/IJN.S3795                vol.6(4): 1227–1237.
              11.  Zhong S P, Zhang Y Z and Lim C T, 2012, Fabrication   http://dx.doi.org/10.1016/j.actbio.2009.10.051
                 of large  pores in electrospun nanofibrous scaffolds for   21.  Moroni L, Hamann D, Schotel R, et al., 2008, 3D fiber-
                 cellular infiltration: A review. Tissue Engineering Part B:   deposited electrospun intergrated scaffolds enhance car-
                 Reviews, vol.18(2): 77–87.                         tilage tissue formation. Advanced Functional Materials,
                 http://dx.doi.org/10.1089/ten.TEB.2011.0390        vol.18(1): 53–60.
                                        International Journal of Bioprinting (2016)–Volume 2, Issue 1      91
   90   91   92   93   94   95   96   97   98   99   100