Page 11 - IJB-2-2
P. 11

Stephanie Knowlton, Ashwini Joshi, Bekir Yenilmez, et al.

              3.   Kim B J, Hannanta-anan P, Chau M, et al. 2013, Coop-  Cancer Metastasis Reviews, vol.1(1): 17–28.
                 erative roles of SDF-1α  and  EGF  gradients  on  tumor   http://dx.doi.org/10.1007/BF00049478
                 cell migration revealed by a robust 3D microfluidic   15.  Ghaemmaghami A M, Hancock M J, Harrington H, et al.
                 model. PLoS One, vol.8(7): e68422.                 2012, Biomimetic tissues on a chip for drug discovery.
                 http://dx.doi.org/10.1371/journal.pone.0068422     Drug Discovery Today, vol.17(3–4): 173–181.
              4.   Loessner D, Stok K S, Lutolf M P, et al. 2010, Bioengi-  http://dx.doi.org/10.1016/j.drudis.2011.10.02
                 neered 3D  platform to explore cell-ECM interactions   16.  Dababneh A B and Ozbolat I T, 2014, Bioprinting tech-
                 and drug resistance of epithelial ovarian cancer cells.   nology:  A current state-of-the-art review. Journal of
                 Biomaterials, vol.31(32): 8494–8506.               Manufacturing Science and Engineering, vol.136(6):
                 http://dx.doi.org/10.1016/j.biomaterials.2010.07.064   061016.
              5.   Zhao Y, Yao R, Ouyang L,  et al.  2014, Three-dimen-  http://dx.doi.org/10.1115/1.4028512
                 sional printing of Hela cells for cervical tumor model in   17.  Junttila M R and  de Sauvage F J, 2013, Influence of
                 vitro. Biofabrication, vol.6(3): 035001.           tumour micro-environment heterogeneity on therapeutic
                 http://dx.doi.org/10.1088/1758-5082/6/3/035001     response. Nature, vol.501(7467): 346–354.
              6.   Friedl P and Wolf K, 2010, Plasticity of cell migration: a   http://dx.doi.org/10.1038/nature12626
                 multiscale tuning model. Journal  of Cell Biology,   18.  Xu F, Celli J, Rizvi I, et al. 2011, A three-dimensional in
                 vol.188(1): 11–19.                                 vitro ovarian cancer coculture model using a high-
                 http://dx.doi.org/10.1083/jcb.200909003            throughput cell patterning platform.  Biotechnology
              7.   Li C L, Tian T, Nan K J, et al. 2008, Survival advantag-  Journal, vol.6(2): 204–212.
                 es of multicellular spheroids vs. monolayers of HepG2   http://dx.doi.org/10.1002/biot.201000340
                 cells in vitro. Oncology Reports, vol.20(6): 1465–1471.   19.  Weiss L E, Amon C H, Finger E D, et al. 2005, Baye-
                 http://dx.doi.org/10.3892/or_00000167              sian computer-aided experimental design  of heteroge-
              8.   Chopra V, Dinh T V and Hannigan E V, 1997, Three-   neous scaffolds for tissue engineering. Computer-Aided
                 dimensional endothelial-tumor epithelial cell interac-  Design, vol.37(11): 1127–1139.
                 tions in  human cervical cancers.  In Vitro Cellular  &   http://dx.doi.org/10.1016/j.cad.2005.02.004
                 Developmental Biology-Animal, vol.33(6): 432–442.   20.  Keenan T M and Folch A, 2008, Biomolecular gradients
                 http://dx.doi.org/10.1007/s11626-997-0061-y        in cell culture systems. Lab on a Chip, vol.8(1): 34–57.
              9.   Knowlton S, Onal S, Chu H Y, et al. 2015, Bioprinting   http://dx.doi.org/10.1039/B711887B
                 for cancer research. Trends in Biotechnology, vol.33(9):   21.  Nagy J A, Chang S H, Dvorak A M, et al. 2009, Why
                 504–513.                                           are tumour blood vessels abnormal and why is it impor-
                 http://dx.doi.org/10.1016/j.tibtech.2015.06.007    tant to know? British Journal  of Cancer, vol.100(6):
              10.  Huh D, Hamilton G A and Ingber D E, 2011, From 3D   865–869.
                 cell culture to organs-on-chips. Trends in Cell Biology,   http://dx.doi.org/10.1038/sj.bjc.6604929
                 vol.21(12): 745–754.                           22.  Huang T Q, Qu X, Liu J,  et al.  2014,  3D printing of
                 http://dx.doi.org/10.1016/j.tcb.2011.09.005        biomimetic microstructures  for cancer  cell migration.
              11.  Huh D, Torisawa Y S, Hamilton G A, et al. 2012, Mi-  Biomedical Microdevices, vol.16(1): 127–132.
                 croengineered physiological biomimicry: organs-on-   http://dx.doi.org/10.1007/s10544-013-9812-6
                 chips. Lab on a Chip, vol.12(12): 2156–2164.   23.  Chauhan V P, Stylianopoulous T, Martin J D, et al. 2012,
                 http://dx.doi.org/10.1039/c2lc40089h               Normalization of tumour blood vessels improves the de-
              12.  Chang S F, Chang C A, Lee D-Y, et al. 2008, Tumor cell   livery of nanomedicines in a size-dependent manner.
                 cycle arrest induced by shear stress: roles of integrins   Nature Nanotechnology, vol.7(6): 383–388.
                 and Smad.  Proceedings  of the National Academy of   http://dx.doi.org/10.1038/nnano.2012.45
                 Sciences of the United States of America, vol.105(10):   24.  Hirschhaeuser F, Menne H, Dittfeld C, et al. 2010, Mul-
                 3927–3932.                                         ticellular tumor spheroids: an  underestimated tool is
                 http://dx.doi.org/10.1073/pnas.0712353105          catching up again. Journal of Biotechnology, vol.148(1):
              13.  Polacheck W J, Charest J L and Kamm R D, 2011, In-  3–15.
                 terstitial flow influences direction of tumor cell migra-  http://dx.doi.org/10.1016/j.jbiotec.2010.01.012
                 tion through competing mechanisms. Proceedings of the   25.  Hribar K C, Finlay D, Ma X, et al. 2015, Nonlinear 3D
                 National Academy of  Sciences of the United  States of   projection printing of concave hydrogel microstructures
                 America, vol.108(27): 11115–11120.                 for long-term multicellular spheroid and embryoid body
                 http://dx.doi.org/10.1073/pnas.1103581108          culture. Lab on a Chip, vol.15(11): 2412–2418.
              14.  Varani J,  1982, Chemotaxis of  metastatic tumor cells.   http://dx.doi.org/10.1039/c5lc00159e
                                        International Journal of Bioprinting (2016)–Volume 2, Issue 2       7
   6   7   8   9   10   11   12   13   14   15   16