Page 11 - IJB-2-2
P. 11
Stephanie Knowlton, Ashwini Joshi, Bekir Yenilmez, et al.
3. Kim B J, Hannanta-anan P, Chau M, et al. 2013, Coop- Cancer Metastasis Reviews, vol.1(1): 17–28.
erative roles of SDF-1α and EGF gradients on tumor http://dx.doi.org/10.1007/BF00049478
cell migration revealed by a robust 3D microfluidic 15. Ghaemmaghami A M, Hancock M J, Harrington H, et al.
model. PLoS One, vol.8(7): e68422. 2012, Biomimetic tissues on a chip for drug discovery.
http://dx.doi.org/10.1371/journal.pone.0068422 Drug Discovery Today, vol.17(3–4): 173–181.
4. Loessner D, Stok K S, Lutolf M P, et al. 2010, Bioengi- http://dx.doi.org/10.1016/j.drudis.2011.10.02
neered 3D platform to explore cell-ECM interactions 16. Dababneh A B and Ozbolat I T, 2014, Bioprinting tech-
and drug resistance of epithelial ovarian cancer cells. nology: A current state-of-the-art review. Journal of
Biomaterials, vol.31(32): 8494–8506. Manufacturing Science and Engineering, vol.136(6):
http://dx.doi.org/10.1016/j.biomaterials.2010.07.064 061016.
5. Zhao Y, Yao R, Ouyang L, et al. 2014, Three-dimen- http://dx.doi.org/10.1115/1.4028512
sional printing of Hela cells for cervical tumor model in 17. Junttila M R and de Sauvage F J, 2013, Influence of
vitro. Biofabrication, vol.6(3): 035001. tumour micro-environment heterogeneity on therapeutic
http://dx.doi.org/10.1088/1758-5082/6/3/035001 response. Nature, vol.501(7467): 346–354.
6. Friedl P and Wolf K, 2010, Plasticity of cell migration: a http://dx.doi.org/10.1038/nature12626
multiscale tuning model. Journal of Cell Biology, 18. Xu F, Celli J, Rizvi I, et al. 2011, A three-dimensional in
vol.188(1): 11–19. vitro ovarian cancer coculture model using a high-
http://dx.doi.org/10.1083/jcb.200909003 throughput cell patterning platform. Biotechnology
7. Li C L, Tian T, Nan K J, et al. 2008, Survival advantag- Journal, vol.6(2): 204–212.
es of multicellular spheroids vs. monolayers of HepG2 http://dx.doi.org/10.1002/biot.201000340
cells in vitro. Oncology Reports, vol.20(6): 1465–1471. 19. Weiss L E, Amon C H, Finger E D, et al. 2005, Baye-
http://dx.doi.org/10.3892/or_00000167 sian computer-aided experimental design of heteroge-
8. Chopra V, Dinh T V and Hannigan E V, 1997, Three- neous scaffolds for tissue engineering. Computer-Aided
dimensional endothelial-tumor epithelial cell interac- Design, vol.37(11): 1127–1139.
tions in human cervical cancers. In Vitro Cellular & http://dx.doi.org/10.1016/j.cad.2005.02.004
Developmental Biology-Animal, vol.33(6): 432–442. 20. Keenan T M and Folch A, 2008, Biomolecular gradients
http://dx.doi.org/10.1007/s11626-997-0061-y in cell culture systems. Lab on a Chip, vol.8(1): 34–57.
9. Knowlton S, Onal S, Chu H Y, et al. 2015, Bioprinting http://dx.doi.org/10.1039/B711887B
for cancer research. Trends in Biotechnology, vol.33(9): 21. Nagy J A, Chang S H, Dvorak A M, et al. 2009, Why
504–513. are tumour blood vessels abnormal and why is it impor-
http://dx.doi.org/10.1016/j.tibtech.2015.06.007 tant to know? British Journal of Cancer, vol.100(6):
10. Huh D, Hamilton G A and Ingber D E, 2011, From 3D 865–869.
cell culture to organs-on-chips. Trends in Cell Biology, http://dx.doi.org/10.1038/sj.bjc.6604929
vol.21(12): 745–754. 22. Huang T Q, Qu X, Liu J, et al. 2014, 3D printing of
http://dx.doi.org/10.1016/j.tcb.2011.09.005 biomimetic microstructures for cancer cell migration.
11. Huh D, Torisawa Y S, Hamilton G A, et al. 2012, Mi- Biomedical Microdevices, vol.16(1): 127–132.
croengineered physiological biomimicry: organs-on- http://dx.doi.org/10.1007/s10544-013-9812-6
chips. Lab on a Chip, vol.12(12): 2156–2164. 23. Chauhan V P, Stylianopoulous T, Martin J D, et al. 2012,
http://dx.doi.org/10.1039/c2lc40089h Normalization of tumour blood vessels improves the de-
12. Chang S F, Chang C A, Lee D-Y, et al. 2008, Tumor cell livery of nanomedicines in a size-dependent manner.
cycle arrest induced by shear stress: roles of integrins Nature Nanotechnology, vol.7(6): 383–388.
and Smad. Proceedings of the National Academy of http://dx.doi.org/10.1038/nnano.2012.45
Sciences of the United States of America, vol.105(10): 24. Hirschhaeuser F, Menne H, Dittfeld C, et al. 2010, Mul-
3927–3932. ticellular tumor spheroids: an underestimated tool is
http://dx.doi.org/10.1073/pnas.0712353105 catching up again. Journal of Biotechnology, vol.148(1):
13. Polacheck W J, Charest J L and Kamm R D, 2011, In- 3–15.
terstitial flow influences direction of tumor cell migra- http://dx.doi.org/10.1016/j.jbiotec.2010.01.012
tion through competing mechanisms. Proceedings of the 25. Hribar K C, Finlay D, Ma X, et al. 2015, Nonlinear 3D
National Academy of Sciences of the United States of projection printing of concave hydrogel microstructures
America, vol.108(27): 11115–11120. for long-term multicellular spheroid and embryoid body
http://dx.doi.org/10.1073/pnas.1103581108 culture. Lab on a Chip, vol.15(11): 2412–2418.
14. Varani J, 1982, Chemotaxis of metastatic tumor cells. http://dx.doi.org/10.1039/c5lc00159e
International Journal of Bioprinting (2016)–Volume 2, Issue 2 7

