Page 12 - IJB-2-2
P. 12
Advancing cancer research using bioprinting for tumor-on-a-chip platforms
26. Vidi P A, Maleki T, Ochoa M, et al. 2014, Disease-on- ary 18, 2016,
a-chip: mimicry of tumor growth in mammary ducts. <http://csdd.tufts.edu/news/complete_story/pr_tufts_csd
Lab on a Chip, vol.14(1): 172–177. d_2014_cost_study>
http://dx.doi.org/10.1039/c3lc50819f 36. Unger C, Kramer N, Walzl A, et al. 2014, Modeling
27. Rizvi I, Gurkan U A, Tasoglu S, et al. 2013, Flow in- human carcinomas: Physiologically relevant 3D models
duces epithelial-mesenchymal transition, cellular hete- to improve anti-cancer drug development. Advanced
rogeneity and biomarker modulation in 3D ovarian can- Drug Delivery Reviews, vol.79–80: 50–67.
cer nodules. Proceedings of the National Academy of http://dx.doi.org/10.1016/j.addr.2014.10.015
Sciences, vol.110(22): E1974–E1983. 37. Singh M, Morris C P, Ellis R J, et al. 2008, Micro-
http://dx.doi.org/10.1073/pnas.1216989110 sphere-based seamless scaffolds containing macroscopic
28. Albanese A, Lam A K, Sykes E A, et al. 2013, Tumour- gradients of encapsulated factors for tissue engineering.
on-a-chip provides an optical window into nanoparticle Tissue Engineering Part C—Methods, vol.14(4): 299–309.
tissue transport. Nature Communications, vol.4: 2718. http://dx.doi.org/10.1089/ten.tec.2008.0167
http://dx.doi.org/10.1038/ncomms3718 38. He Z Q and Xiong L Z, 2011, Fabrication of poly(D,
29. Kwak B, Ozcelikkale A, Shin C s, et al. 2014, Simula- L-lactide-co-glycolide) microspheres and degradation
tion of complex transport of nanoparticles around a tu- characteristics in vitro. Journal of Macromolecular
mor using tumor-microenvironment-on-chip. Journal of Science Part B—Physics, vol.50(9): 1682–1690.
Controlled Release, vol.194: 157–167. http://dx.doi.org/10.1080/00222348.2010.543036
http://dx.doi.org/10.1016/j.jconrel.2014.08.027 39. Bertassoni L E, Cardoso J C, Manoharan V, et al. 2014,
30. Chang R, Nam J and Sun W, 2008, Direct cell writing of Direct-write bioprinting of cell-laden methacrylated ge-
3D microorgan for in vitro pharmacokinetic model. Tis- latin hydrogels. Biofabrication, vol.6(2): 024105.
sue Engineering Part C Methods, vol.14(2): 157–166. http://dx.doi.org/10.1088/1758-5082/6/2/024105
http://dx.doi.org/10.1089/ten.tec.2007.0392 40. Tasoglu S and Demirci U, 2013, Bioprinting for stem
31. Snyder J, Son A R, Hamid Q, et al. 2015, Fabrication of cell research. Trends in Biotechnology, vol.31(1): 10–19.
microfluidic manifold by precision extrusion deposition http://dx.doi.org/10.1016/j.tibtech.2012.10.005
and replica molding for cell-laden device. Journal of 41. Durmus N G, Tasoglu S and Demirci U, 2013, Bio-
Manufacturing Science and Engineering, vol.138(4): printing: functional droplet networks. Nature Materials,
041007. vol.12(6): 478–479.
http://dx.doi.org/10.1115/1.4031551 http://dx.doi.org/10.1038/nmat3665
32. Hamid Q, Wang C, Zhao Y, et al. 2014, A three-dimen- 42. Ozbolat I T and Yu Y, 2013, Bioprinting toward organ
sional cell-laden microfluidic chip for in vitro drug me- fabrication: challenges and future trends. IEEE Transac-
tabolism detection. Biofabrication, vol.6(2): 025008. tions on Biomedical Engineering, vol.60(3): 691–699.
http://dx.doi.org/10.1088/1758-5082/6/2/025008 http://dx.doi.org/10.1109/TBME.2013.2243912
33. Hamid Q, Wang C, Synder J, et al. 2015, Maskless fa- 43. Kolesky D B, Truby R L, Gladman A S, et al. 2014, 3D
brication of cell-laden microfluidic chips with localized bioprinting of vascularized, heterogeneous cell-laden
surface functionalization for the co-culture of cancer tissue constructs. Advanced Materials, vol.26(19): 3124–
cells. Biofabrication, vol.7(1):015012. 3130.
http://dx.doi.org/10.1088/1758-5090/7/1/015012 http://dx.doi.org/10.1002/adma.201305506
34. An Uphill Battle, n.d., viewed February 18, 2016, 44. Drug Discovery, 2015, InvivoSciences, viewed Febru-
<http://www.brightfocus.org/sites/default/files/An%20U ary 18, 2016,
phill%20Battle.jpg> <http://invivosciences.com/products-services/drug-disco
35. PR Tufts CSDD 2014 Cost Study, 2014, viewed Febru- very/>
8 International Journal of Bioprinting (2016)–Volume 2, Issue 2

