Page 12 - IJB-2-2
P. 12

Advancing cancer research using bioprinting for tumor-on-a-chip platforms

              26.  Vidi P A, Maleki T, Ochoa M, et al. 2014, Disease-on-   ary 18, 2016,
                 a-chip: mimicry of tumor growth in mammary ducts.   <http://csdd.tufts.edu/news/complete_story/pr_tufts_csd
                 Lab on a Chip, vol.14(1): 172–177.                 d_2014_cost_study>
                 http://dx.doi.org/10.1039/c3lc50819f           36.  Unger C, Kramer N, Walzl A,  et al.  2014, Modeling
              27.  Rizvi I, Gurkan U A, Tasoglu S, et al. 2013, Flow in-  human carcinomas: Physiologically relevant 3D models
                 duces epithelial-mesenchymal transition, cellular hete-  to improve anti-cancer drug development.  Advanced
                 rogeneity and biomarker modulation in 3D ovarian can-  Drug Delivery Reviews, vol.79–80: 50–67.
                 cer nodules.  Proceedings of the National Academy of   http://dx.doi.org/10.1016/j.addr.2014.10.015
                 Sciences, vol.110(22): E1974–E1983.            37.  Singh M, Morris C  P, Ellis R  J,  et al.  2008, Micro-
                 http://dx.doi.org/10.1073/pnas.1216989110          sphere-based seamless scaffolds containing macroscopic
              28.  Albanese A, Lam A K, Sykes E A, et al. 2013, Tumour-   gradients of encapsulated factors for tissue engineering.
                 on-a-chip provides an optical window into nanoparticle   Tissue Engineering Part C—Methods, vol.14(4): 299–309.
                 tissue transport. Nature Communications, vol.4: 2718.   http://dx.doi.org/10.1089/ten.tec.2008.0167
                 http://dx.doi.org/10.1038/ncomms3718           38.  He Z Q and  Xiong L Z,  2011,  Fabrication  of poly(D,
              29.  Kwak B, Ozcelikkale A, Shin C s, et al. 2014, Simula-  L-lactide-co-glycolide) microspheres and degradation
                 tion of complex transport of nanoparticles around a tu-  characteristics  in vitro.  Journal of Macromolecular
                 mor using tumor-microenvironment-on-chip. Journal of   Science Part B—Physics, vol.50(9): 1682–1690.
                 Controlled Release, vol.194: 157–167.              http://dx.doi.org/10.1080/00222348.2010.543036
                 http://dx.doi.org/10.1016/j.jconrel.2014.08.027   39.  Bertassoni L E, Cardoso J C, Manoharan V, et al. 2014,
              30.  Chang R, Nam J and Sun W, 2008, Direct cell writing of   Direct-write bioprinting of cell-laden methacrylated ge-
                 3D microorgan for in vitro pharmacokinetic model. Tis-  latin hydrogels. Biofabrication, vol.6(2): 024105.
                 sue Engineering Part C Methods, vol.14(2): 157–166.   http://dx.doi.org/10.1088/1758-5082/6/2/024105
                 http://dx.doi.org/10.1089/ten.tec.2007.0392    40.  Tasoglu S and Demirci U, 2013, Bioprinting for stem
              31.  Snyder J, Son A R, Hamid Q, et al. 2015, Fabrication of   cell research. Trends in Biotechnology, vol.31(1): 10–19.
                 microfluidic manifold by precision extrusion deposition   http://dx.doi.org/10.1016/j.tibtech.2012.10.005
                 and replica molding for cell-laden device.  Journal of   41.  Durmus N G, Tasoglu S and  Demirci U, 2013, Bio-
                 Manufacturing Science and Engineering, vol.138(4):   printing: functional droplet networks. Nature Materials,
                 041007.                                            vol.12(6): 478–479.
                 http://dx.doi.org/10.1115/1.4031551                http://dx.doi.org/10.1038/nmat3665
              32.  Hamid Q, Wang C, Zhao Y, et al. 2014, A three-dimen-  42.  Ozbolat I T and Yu Y, 2013, Bioprinting toward organ
                 sional cell-laden microfluidic chip for in vitro drug me-  fabrication: challenges and future trends. IEEE Transac-
                 tabolism detection. Biofabrication, vol.6(2): 025008.   tions on Biomedical Engineering, vol.60(3): 691–699.
                 http://dx.doi.org/10.1088/1758-5082/6/2/025008     http://dx.doi.org/10.1109/TBME.2013.2243912
              33.  Hamid Q, Wang C, Synder J, et al. 2015, Maskless fa-  43.  Kolesky D B, Truby R L, Gladman A S, et al. 2014, 3D
                 brication of cell-laden microfluidic chips with localized   bioprinting  of vascularized, heterogeneous cell-laden
                 surface  functionalization for the co-culture of  cancer   tissue constructs. Advanced Materials, vol.26(19): 3124–
                 cells. Biofabrication, vol.7(1):015012.            3130.
                 http://dx.doi.org/10.1088/1758-5090/7/1/015012     http://dx.doi.org/10.1002/adma.201305506
              34.  An Uphill Battle, n.d., viewed February 18, 2016,   44.  Drug Discovery, 2015,  InvivoSciences,  viewed Febru-
                 <http://www.brightfocus.org/sites/default/files/An%20U  ary 18, 2016,
                 phill%20Battle.jpg>                                <http://invivosciences.com/products-services/drug-disco
              35.  PR Tufts CSDD 2014 Cost Study, 2014, viewed Febru-  very/>
















            8                           International Journal of Bioprinting (2016)–Volume 2, Issue 2
   7   8   9   10   11   12   13   14   15   16   17