Page 186 - IJB-10-2
P. 186

International Journal of Bioprinting                                 Coronavirus-infected bioprinted intestine




            31.  Zhou J, Li C, Liu X, et al. Infection of bat and human intestinal   vesicles  in  the  gut  microenvironment. Int J Mol Sci.
               organoids by SARS-CoV-2. Nat Med. 2020;26(7):1077-1083.   2021;22(24):13513.
               doi: 10.1038/s41591-020-0912-6                     doi: 10.3390/ijms222413513
            32.  Stanifer ML, Kee C, Cortese M, et al. Critical role of type III   43.  Leung CM, de Haan P, Ronaldson-Bouchard K,  et al. A
               interferon in controlling SARS-CoV-2 infection in human   guide to the organ-on-a-chip. Nat Rev Methods Primers.
               intestinal epithelial cells. Cell Rep. 2020;32(1):107863.   2022;2(1):33.
               doi: 10.1016/j.celrep.2020.107863                  doi: 10.1038/s43586-022-00118-6
            33.  Beumer J, Geurts MH, Lamers MM,  et al.  A CRISPR/  44.  Xian C, Zhang J, Zhao S, Li X-G. Gut-on-a-chip for disease
               Cas9 genetically engineered organoid biobank reveals   models. J Tissue Eng. 2023;14:20417314221149882.
               essential host factors for  coronaviruses. Nat Commun.      doi: 10.1177/20417314221149882
               2021;12(1):5498.                                45.  Fois CAM, Le TYL, Schindeler A, et al. Models of the gut for
               doi: 10.1038/s41467-021-25729-7
                                                                  analyzing the impact of food and drugs. Adv Healthc Mater.
            34.  Zang R, Castro MFG, McCune BT,  et al. TMPRSS2 and   2019;8:1900968.
               TMPRSS4 promote SARS-CoV-2 infection of human small      doi: 10.1002/adhm.201900968
               intestinal enterocytes. Sci Immunol. 2020;5(47):eabc3582.   46.  Ensari A, Marsh MN. Exploring the villus.  Gastroenterol
               doi: 10.1126/sciimmunol.abc3582
                                                                  Hepatol Bed Bench. 2018;11:181-190.
            35.  Triana S, Metz-Zumaran C, Ramirez C,  et al. Single-cell   47.  Parker A, Maclaren OJ, Fletcher AG, et al. Cell proliferation
               analyses reveal SARS-CoV-2 interference with intrinsic   within small intestinal crypts is the principal driving force
               immune response in the human gut. Mol Syst Biol.   for cell migration on villi. FASEB J. 2017;31:636-649.
               2021;17(4):e10232.                                 doi: 10.1096/fj.201601002
               doi: 10.15252/msb.202110232
                                                               48.  Sommer  F, Bäckhed F. Know your neighbor: microbiota
            36.  Zhou J, Li C, Zhao G, et al. Human intestinal tract serves   and host epithelial cells interact locally to control intestinal
               as an alternative infection route for Middle East respiratory   function and physiology. BioEssays. 2016;38:455-464.
               syndrome coronavirus. Sci Adv. 2017;3(11):eaao4966.      doi: 10.1002/bies.201500151
               doi: 10.1126/sciadv.aao4966
                                                               49.  Kim SH, Chi M, Yi B, et al. Three-dimensional intestinal
            37.  Wang  Y, Li  P, Lavrijsen M,  et  al. Immunosuppressants   villi epithelium enhances protection of human intestinal
               exert differential effects on pan-coronavirus infection and   cells from bacterial infection by inducing mucin expression.
               distinct combinatory antiviral activity with molnupiravir   Integr Biol. 2014;6:1122-1131.
               and nirmatrelvir. United European Gastroenterol J.      doi: 10.1039/C4IB00157E
               2023;11(5):431-447.
               doi: 10.1002/ueg2.12417                         50.  Fois CAM, Schindeler A, Valtchev P, Dehghani F. Dynamic
                                                                  flow and shear stress as key parameters for intestinal cells
            38.  Li J, Wang Y, Solanki K, et al. Nirmatrelvir exerts distinct   morphology and polarization in an organ-on-a-chip model.
               antiviral potency against different human coronaviruses.   Biomed Microdevices. 2021;23:55.
               Antiviral Res. 2023;211:105555.                    doi: 10.1007/s10544-021-00591-y
               doi: 10.1016/j.antiviral.2023.105555
                                                               51.  Delon LC, Guo Z, Oszmiana A,  et al. A systematic
            39.  Li P, Wang Y, Lamers MM, et al. Recapitulating infection,   investigation of the effect of the fluid shear stress on Caco-
               thermal sensitivity  and antiviral  treatment  of  seasonal   2 cells towards the optimization of epithelial organ-on-chip
               coronaviruses in human airway organoids. eBioMedicine.   models. Biomaterials. 2019;225:119521.
               2022;81:104132.                                    doi: 10.1016/j.biomaterials.2019.119521
               doi: 10.1016/j.ebiom.2022.104132
                                                               52.  Chi M, Yi B, Oh S, Park D-J, Sung JH, Park S. A microfluidic
            40.  Hashimoto R, Tamura T, Watanabe Y,  et al. Evaluation   cell culture device (μFCCD) to culture epithelial cells
               of broad anti-coronavirus activity of autophagy-related   with physiological and morphological properties that
               compounds using human airway organoids. Mol        mimic those of the human intestine. Biomed Microdevices.
               Pharmaceutics. 2023;20(4):2276-2287.               2015;17:58.
               doi: 10.1021/acs.molpharmaceut.3c00114
                                                                  doi: 10.1007/s10544-015-9966-5
            41.  Calistri A, Luganini A, Mognetti B, et al. The new generation   53.  Gayer CP, Basson MD. The effects of mechanical forces
               hDHODH inhibitor MEDS433 hinders the in vitro      on intestinal physiology and pathology. Cell Signal.
               replication of SARS-CoV-2 and other human coronaviruses.   2009;21:1237-1244.
               Microorganisms. 2021;9(8):1731.                    doi: 10.1016/j.cellsig.2009.02.011
               doi: 10.3390/microorganisms9081731
                                                               54.  Feaugas T, Sauvonnet N. Organ-on-chip to investigate host-
            42.  Kim M-H, van Noort D, Sung JH, Park S. Organ-on-a-chip   pathogens interactions. Cell Microbiol. 2021;23:e13336.
               for studying gut-brain interaction mediated by extracellular      doi: 10.1111/cmi.13336



            Volume 10 Issue 2 (2024)                       178                                doi: 10.36922/ijb.1704
   181   182   183   184   185   186   187   188   189   190   191