Page 187 - IJB-10-2
P. 187

International Journal of Bioprinting                                 Coronavirus-infected bioprinted intestine




            55.  Grassart A, Malardé V, Gobaa S, et al. Bioengineered human   67.  Bein A, Kim S, Goyal G, et al. Enteric coronavirus infection
               organ-on-chip reveals intestinal microenvironment and   and treatment modeled with an immunocompetent human
               mechanical forces impacting shigella infection. Cell Host   intestine-on-a-chip. Front Pharmacol. 2021;12:718484.
               Microbe. 2019;26:435-444.e4.                       doi: 10.3389/fphar.2021.718484
               doi: 10.1016/j.chom.2019.08.007
                                                               68.  Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog
            56.  Kim HJ, Huh D, Hamilton G,  Ingber DE. Human gut-  C. The protein expression profile of ACE2 in human tissues.
               on-a-chip inhabited by microbial flora that experiences   Mol Syst Biol. 2020;16(7):e9610.
               intestinal peristalsis-like  motions  and  flow.  Lab  Chip.      doi: 10.15252/msb.20209610
               2012;12(12):2165-2174.                          69.  Guo Y, Luo R, Wang Y, et al. SARS-CoV-2 induced intestinal
               doi: 10.1039/C2LC40074J                            responses with a biomimetic human gut-on-chip. Sci Bull.
            57.  Tovaglieri A, Sontheimer-Phelps A, Geirnaert A,  et al.   2021;66(8):783-793.
               Species-specific  enhancement of  enterohemorrhagic E.      doi: 10.1016/j.scib.2020.11.015
               coli pathogenesis mediated by microbiome metabolites.   70.  Yeager CL, Ashmun RA, Williams RK,  et al. Human
               Microbiome. 2019;7(1):43.                          aminopeptidase N is a receptor for human coronavirus
               doi: 10.1186/s40168-019-0650-5                     229E. Nature. 1992;357(6377):420-422.
            58.  Wang Y, Wang P, Qin J. Human organoids and organs-     doi: 10.1038/357420a0
               on-chips for addressing  COVID-19 challenges. Adv Sci.   71.  Tobey N, Heizer W, Yeh R, Huang T-I, Hoffner C. Human
               2022;9(10):2105187.                                intestinal brush border peptidases. Gastroenterology.
               doi: 10.1002/advs.202105187                        1985;88(4):913-926.
            59.  Tang H, Abouleila Y, Si L, et al. Human organs-on-chips for      doi: 10.1016/S0016-5085(85)80008-1
               virology. Trends Microbiol. 2020;28(11):934-946.   72.  Shim K-Y, Lee D, Han J,  Nguyen N-T, Park S, Sung JH.
               doi: 10.1016/j.tim.2020.06.005                     Microfluidic  gut-on-a-chip with three-dimensional  villi
            60.  Ortega-Prieto AM, Skelton JK, Wai SN, et al. 3D microfluidic   structure. Biomed Microdevices. 2017;19(2):37.
               liver cultures as a physiological preclinical tool for hepatitis      doi: 10.1007/s10544-017-0179-y
               B virus infection. Nat Commun. 2018;9(1):682.   73.  Tan H-Y, Trier S, Rahbek UL, Dufva M, Kutter JP, Andresen
               doi: 10.1038/s41467-018-02969-8                    TL. A multi-chamber microfluidic intestinal barrier model
            61.  Wang  J,  Wang  C,  Xu  N,  Liu  Z-F,  Pang  D-W,  Zhang  Z-L.   using Caco-2 cells for drug transport studies. PLOS ONE.
               A virus-induced kidney disease model based on organ-  2018;13(5):e0197101.
               on-a-chip:  pathogenesis  exploration  of  virus-related  renal      doi: 10.1371/journal.pone.0197101
               dysfunctions. Biomaterials. 2019;219:119367.    74.  Park SE, Georgescu A, Huh D.  Organoids-on-a-chip.
               doi: 10.1016/j.biomaterials.2019.119367            Science. 2019;364(6444):960-965.
            62.  Han Y, Yang L, Lacko LA,  Chen S. Human organoid      doi: 10.1126/science.aaw7894
               models to study SARS-CoV-2 infection. Nat Methods.   75.  Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater.
               2022;19(4):418-428.                                2021;6(5):402-420.
               doi: 10.1038/s41592-022-01453-y                    doi: 10.1038/s41578-021-00279-y
            63.  Zhang M, Wang P, Luo R, et al. Biomimetic human disease   76.  Workman  MJ, Gleeson JP, Troisi  EJ,  et  al. Enhanced
               model of SARS-CoV-2-induced lung injury and immune   utilization of induced pluripotent stem cell–derived human
               responses on organ chip system. Adv Sci. 2021;8(3):2002928.   intestinal organoids using microengineered chips. Cell Mol
               doi: 10.1002/advs.202002928                        Gastroenterol Hepatol. 2018;5(4):669-677.e2.
            64.  Deguchi S, Kosugi K, Hashimoto R, et al. Elucidation of the      doi: 10.1016/j.jcmgh.2017.12.008
               liver pathophysiology of COVID-19 patients using liver-on-  77.  Kasendra M, Tovaglieri A, Sontheimer-Phelps A,  et al.
               a-chips. PNAS Nexus. 2023;2(3):pgad029.            Development  of a  primary  human small  intestine-on-
               doi: 10.1093/pnasnexus/pgad029                     a-chip  using biopsy-derived organoids. Sci Rep. 2018;
            65.  Lu RXZ, Lai BFL, Rafatian N,  et al. Vasculature-on-a-chip   8(1):2871.
               platform  with  innate  immunity  enables identification  of      doi: 10.1038/s41598-018-21201-7
               angiopoietin-1 derived peptide as a therapeutic for SARS-  78.  Kasendra M, Luc R, Yin J, et al. Duodenum intestine-chip
               CoV-2 induced inflammation. Lab Chip. 2022;22(6):1171-1186.   for preclinical drug assessment in a human relevant model.
               doi: 10.1039/D1LC00817J                            eLife. 2020;9:e50135.
                                                                  doi: 10.7554/eLife.50135
            66.  Villenave R, Wales SQ, Hamkins-Indik T,  et al. Human
               gut-on-a-chip supports polarized infection of Coxsackie B1   79.  Shin W, Hinojosa CD, Ingber DE,  Kim HJ. Human
               virus in vitro. PLOS ONE. 2017;12(2):e0169412.     intestinal morphogenesis controlled by transepithelial
               doi: 10.1371/journal.pone.0169412                  morphogen  gradient  and  flow-dependent  physical  cues


            Volume 10 Issue 2 (2024)                       179                                doi: 10.36922/ijb.1704
   182   183   184   185   186   187   188   189   190   191   192