Page 211 - IJB-10-2
P. 211

International Journal of Bioprinting                                          Optimizing inkjet bioprinting




            39.  Xu H, Liu J, Zhang Z, et al. Cell sedimentation during 3D   52.  Stolberg S, McCloskey KE. Can shear stress direct stem cell
               bioprinting: a mini review.  Bio-Des  Manuf. 2022;5(3):   fate? Biotechnol Progr. 2009;25(1):10-19.
               617-626.                                           doi: 10.1002/btpr.124
               doi: 10.1007/s42242-022-00183-6
                                                               53.  Smith C, Greenfield P, Randerson D. Shear sensitivity of
            40.  Liu J, Shahriar M, Xu H,  Xu C. Cell-laden bioink   three hybridoma cell lines in suspension culture. Mod Apr
               circulation-assisted inkjet-based bioprinting to mitigate   Anim cell tech. 1987;316-327.
               cell sedimentation and aggregation.  Biofabrication.      doi: 10.1016/B978-0-408-02732-8.50027-4
               2022;14(4):045020.
               doi: 10.1088/1758-5090/ac8fb7                   54.  Malek AM, Alper SL, Izumo S. Hemodynamic shear
                                                                  stress and its role in atherosclerosis.  Jama. 1999;282(21):
            41.  Allen  RR, Meyer  JD, Knight WR. Thermodynamics  and   2035-2042.
               hydrodynamics of thermal ink jets.  Hewlett-Packard J.      doi: 10.1001/jama.282.21.2035
               1985;36(5):21-27
               doi: hparchive.com/Journals/HPJ-1985-05.pdf     55.  Reneman RS, Hoeks AP. Wall shear stress as measured in
                                                                  vivo: consequences for the design of the arterial system. Med
            42.  Morita N, Hiratsuka M, Hamazaki T,  et al. Pulse and   Biol Eng Comput. 2008;46:499-507.
               temperature control of thermal ink jet printheads      doi: 10.1007/s11517-008-0330-2
               without a heater passivation layer.  J Imaging Sci Technol.
               2008;52(2):20503-1-20503-5.                     56.  Williams A, Hughes D, Nyborg W. Hemolysis near a
               doi: 10.2352/J.ImagingSci.Technol.(2008)52:2(020503)   transversely oscillating wire. Sci. 1970;169(3948):871-873.
                                                                  doi: 10.1126/science.169.3948.871
            43.  Skripov VP. Metastable Liquids. New York: Wiley;1974.
                                                               57.  Rooney JA. Hemolysis near an ultrasonically pulsating gas
            44.  Okuyama K, Tsukahara S, Morita N,  Iida Y. Transient   bubble. Sci. 1970;169(3948):869-871.
               behavior of boiling bubbles generated on the small heater      doi: 10.1126/science.169.3948.869
               of a thermal ink jet printhead.  Exp Therm Fluid Sci.
               2004;28(8):825-834.                             58.  Forstrom RJ.  A  New  Measure  of  Erythrocyte  Membrane
               doi: 10.1016/j.expthermflusci.2003.12.018          Strength: The Jet Fragility Test. [PhD thesis]. Minnesota:
                                                                  University of Minnesota; 1969
            45.  Meyer J. Bubble Growth and Nucleation Properties in
               Thermal Ink-jet Printing Technology.  Digest of Technical   59.  Blackshear PL. Hemolysis at prosthetic surfaces. In: Hair
               Papers - SID International Symposium. 1986; (17) 101-104.    ML, ed. Chemistry of Biosurfaces. New York: Marcel Dekker;
                                                                  1972: 523-561.
            46.  Chang L. Effects of kogation on the operation and
               lifetime  of  bubble  jet  thin-film  devices.  Denshi Shashin   60.  Kretzmer G, Schügerl K. Response of mammalian cells to
               Gakkaishi(Electrophotography). 1989;28(1):2-8.     shear stress. Appl Microbiol Biotechnol. 1991;34:613-616.
               doi: 10.11370/isjepj.28.2                          doi: 10.1007/BF00167909
            47.  Wijshoff H. The dynamics of the piezo inkjet printhead   61.  Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear
               operation. Phys Rep. 2010;491(4-5):77-177.         stress is a conserved biophysical property of malignant cells.
               doi: 10.1016/j.physrep.2010.03.003                 PloS one. 2012;7(12):e50973.
                                                                  doi: 10.1371/journal.pone.0050973
            48.  Sharp MK, Mohammad SF. Scaling of hemolysis in needles
               and catheters, Ann Biomed Eng. 1998;26:788-797.  62.  Lohse D. Fundamental fluid dynamics challenges in inkjet
               doi: 10.1114/1.65                                  printing. Annu Rev Fluid Mech. 2022;54:349-382.
                                                                  doi: 10.1146/annurev-fluid-022321-114001
            49.  Grigioni M, Daniele C, Morbiducci U, D’Avenio Giuseppe, Di
               Benedetto G, Barbaro V. The power‐law mathematical model   63.  Xu T, Gregory CA, Molnar P,  Cui X. Viability and
               for blood damage prediction: analytical developments and   electrophysiology of neural cell structures generated by the
               physical inconsistencies. Artif Organs. 2004;28(5):467-475.  inkjet printing method.  Biomaterials. 2006;27(19):3580-
               doi: 10.1111/j.1525-1594.2004.00015.x              3588.
                                                                  doi: 10.1016/j.biomaterials.2006.01.048
            50.  Grigioni M, Morbiducci U, D’Avenio G, Di Benedetto G, Del
               Gaudio C. A novel formulation for blood trauma prediction   64.  Yumoto M, Hemmi N, Sato N, et al. Evaluation of the effects
               by a modified power-law mathematical model.  Biomech   of cell-dispensing using an inkjet-based bioprinter on cell
               Model Mechanobio. 2005;4:249-260.                  integrity by RNA-seq analysis. Sci Rep. 2020;10(1):7158.
               doi: 10.1007/s10237-005-0005-y                     doi: 10.1038/s41598-020-64193-z
            51.  Faghih MM, Sharp MK. Modeling and prediction of flow-  65.  Furbank  RJ, Morris  JF.  An  experimental  study  of  particle
               induced hemolysis: A review. Biomech Model Mechanobio.   effects on drop formation.  Phys  Fluids. 2004;16(5):
               2019;18:845-881.                                   1777-1790.
               doi: 10.1007/s10237-019-01137-1                    doi: 10.1063/1.1691034



            Volume 10 Issue 2 (2024)                       203                                doi: 10.36922/ijb.2135
   206   207   208   209   210   211   212   213   214   215   216