Page 211 - IJB-10-2
P. 211
International Journal of Bioprinting Optimizing inkjet bioprinting
39. Xu H, Liu J, Zhang Z, et al. Cell sedimentation during 3D 52. Stolberg S, McCloskey KE. Can shear stress direct stem cell
bioprinting: a mini review. Bio-Des Manuf. 2022;5(3): fate? Biotechnol Progr. 2009;25(1):10-19.
617-626. doi: 10.1002/btpr.124
doi: 10.1007/s42242-022-00183-6
53. Smith C, Greenfield P, Randerson D. Shear sensitivity of
40. Liu J, Shahriar M, Xu H, Xu C. Cell-laden bioink three hybridoma cell lines in suspension culture. Mod Apr
circulation-assisted inkjet-based bioprinting to mitigate Anim cell tech. 1987;316-327.
cell sedimentation and aggregation. Biofabrication. doi: 10.1016/B978-0-408-02732-8.50027-4
2022;14(4):045020.
doi: 10.1088/1758-5090/ac8fb7 54. Malek AM, Alper SL, Izumo S. Hemodynamic shear
stress and its role in atherosclerosis. Jama. 1999;282(21):
41. Allen RR, Meyer JD, Knight WR. Thermodynamics and 2035-2042.
hydrodynamics of thermal ink jets. Hewlett-Packard J. doi: 10.1001/jama.282.21.2035
1985;36(5):21-27
doi: hparchive.com/Journals/HPJ-1985-05.pdf 55. Reneman RS, Hoeks AP. Wall shear stress as measured in
vivo: consequences for the design of the arterial system. Med
42. Morita N, Hiratsuka M, Hamazaki T, et al. Pulse and Biol Eng Comput. 2008;46:499-507.
temperature control of thermal ink jet printheads doi: 10.1007/s11517-008-0330-2
without a heater passivation layer. J Imaging Sci Technol.
2008;52(2):20503-1-20503-5. 56. Williams A, Hughes D, Nyborg W. Hemolysis near a
doi: 10.2352/J.ImagingSci.Technol.(2008)52:2(020503) transversely oscillating wire. Sci. 1970;169(3948):871-873.
doi: 10.1126/science.169.3948.871
43. Skripov VP. Metastable Liquids. New York: Wiley;1974.
57. Rooney JA. Hemolysis near an ultrasonically pulsating gas
44. Okuyama K, Tsukahara S, Morita N, Iida Y. Transient bubble. Sci. 1970;169(3948):869-871.
behavior of boiling bubbles generated on the small heater doi: 10.1126/science.169.3948.869
of a thermal ink jet printhead. Exp Therm Fluid Sci.
2004;28(8):825-834. 58. Forstrom RJ. A New Measure of Erythrocyte Membrane
doi: 10.1016/j.expthermflusci.2003.12.018 Strength: The Jet Fragility Test. [PhD thesis]. Minnesota:
University of Minnesota; 1969
45. Meyer J. Bubble Growth and Nucleation Properties in
Thermal Ink-jet Printing Technology. Digest of Technical 59. Blackshear PL. Hemolysis at prosthetic surfaces. In: Hair
Papers - SID International Symposium. 1986; (17) 101-104. ML, ed. Chemistry of Biosurfaces. New York: Marcel Dekker;
1972: 523-561.
46. Chang L. Effects of kogation on the operation and
lifetime of bubble jet thin-film devices. Denshi Shashin 60. Kretzmer G, Schügerl K. Response of mammalian cells to
Gakkaishi(Electrophotography). 1989;28(1):2-8. shear stress. Appl Microbiol Biotechnol. 1991;34:613-616.
doi: 10.11370/isjepj.28.2 doi: 10.1007/BF00167909
47. Wijshoff H. The dynamics of the piezo inkjet printhead 61. Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear
operation. Phys Rep. 2010;491(4-5):77-177. stress is a conserved biophysical property of malignant cells.
doi: 10.1016/j.physrep.2010.03.003 PloS one. 2012;7(12):e50973.
doi: 10.1371/journal.pone.0050973
48. Sharp MK, Mohammad SF. Scaling of hemolysis in needles
and catheters, Ann Biomed Eng. 1998;26:788-797. 62. Lohse D. Fundamental fluid dynamics challenges in inkjet
doi: 10.1114/1.65 printing. Annu Rev Fluid Mech. 2022;54:349-382.
doi: 10.1146/annurev-fluid-022321-114001
49. Grigioni M, Daniele C, Morbiducci U, D’Avenio Giuseppe, Di
Benedetto G, Barbaro V. The power‐law mathematical model 63. Xu T, Gregory CA, Molnar P, Cui X. Viability and
for blood damage prediction: analytical developments and electrophysiology of neural cell structures generated by the
physical inconsistencies. Artif Organs. 2004;28(5):467-475. inkjet printing method. Biomaterials. 2006;27(19):3580-
doi: 10.1111/j.1525-1594.2004.00015.x 3588.
doi: 10.1016/j.biomaterials.2006.01.048
50. Grigioni M, Morbiducci U, D’Avenio G, Di Benedetto G, Del
Gaudio C. A novel formulation for blood trauma prediction 64. Yumoto M, Hemmi N, Sato N, et al. Evaluation of the effects
by a modified power-law mathematical model. Biomech of cell-dispensing using an inkjet-based bioprinter on cell
Model Mechanobio. 2005;4:249-260. integrity by RNA-seq analysis. Sci Rep. 2020;10(1):7158.
doi: 10.1007/s10237-005-0005-y doi: 10.1038/s41598-020-64193-z
51. Faghih MM, Sharp MK. Modeling and prediction of flow- 65. Furbank RJ, Morris JF. An experimental study of particle
induced hemolysis: A review. Biomech Model Mechanobio. effects on drop formation. Phys Fluids. 2004;16(5):
2019;18:845-881. 1777-1790.
doi: 10.1007/s10237-019-01137-1 doi: 10.1063/1.1691034
Volume 10 Issue 2 (2024) 203 doi: 10.36922/ijb.2135

