Page 210 - IJB-10-2
P. 210
International Journal of Bioprinting Optimizing inkjet bioprinting
13. Liu S, Zhang H, Ahlfeld T, et al. Evaluation of different doi: 10.18063/ijb.v8i1.424
crosslinking methods in altering the properties of extrusion- 26. Huang X, Ng WL, Yeong WY. Predicting the number
printed chitosan-based multi-material hydrogel composites. of printed cells during inkjet-based bioprinting process
Bio-Des Manuf. 2023;6(2):150-173. based on droplet velocity profile using machine learning
doi: 10.1007/s42242-022-00194-3
approaches. J Intell Manuf. 2023;1-16.
14. WL Ng, Yeong WY, Naing MW. Polyelectrolyte gelatin- doi: 10.1007/s10845-023-02167-4
chitosan hydrogel optimized for 3D bioprinting in skin 27. Rutgers IR. Relative viscosity of suspensions of rigid spheres
tissue engineering. Int J Bioprint. 2016;2(1):53-62. in newtonian liquids. Rheol Acta. 1962;2(3):202-210.
doi: 10.18063/IJB.2016.01.009 doi: 10.1007/BF01983952
15. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based 28. Hsueh C, Wei W. Analyses of effective viscosity of
bioprinting–process, materials, applications and regulatory suspensions with deformable polydispersed spheres. J Phys
challenges. Biofabrication. 2020;12(2):022001. D: Appl Phys. 2009;42(7):075503.
doi: 10.1088/1758-5090/ab6034 doi: 10.1088/0022-3727/42/7/075503
16. Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS. 29. A. Einstein. Eine neue bestimmung der Moleküldimensionen.
Recent advances in formulating and processing biomaterial Annalen der Physik. 1906;324(2):289-306.
inks for vat polymerization‐vased 3D printing. Adv Healthc doi: 10.1002/andp.19063240204
Mater. 2020;9(15):2000156.
doi: 10.1002/adhm.202000156 30. Taylor GI. The viscosity of a fluid containing small drops of
another fluid, proceedings of the royal society of london.
17. Klebe RJ. Cytoscribing: A method for micropositioning Series A. Containing Pap of a Math & Phys Character.
cells and the construction of two-and three-dimensional 1932;138(834):41-48.
synthetic tissues. Exp Cell Res. 1988;179(2):362-373. doi: 10.1098/rspa.1932.0169
doi: 10.1016/0014-4827(88)90275-3
31. Wang K, Sun X, Zhang Y, et al. Characterization of
18. Roth EA, Xu T, Das M, Hickman JJ, Boland T. Inkjet cytoplasmic viscosity of hundreds of single tumour
printing for high-throughput cell patterning. Biomaterials. cells based on micropipette aspiration. R Soc Open Sci.
2004;25(17):3707-3715. 2019;6(3):181707.
doi: 10.1016/j.biomaterials.2003.10.052 doi: 10.1098/rsos.181707
19. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing 32. Phan-Thien N, Pham D. Differential multiphase models
of viable mammalian cells. Biomaterials. 2005;26(1):93-99. for polydispersed suspensions and particulate solids.
doi: 10.1016/j.biomaterials.2004.04.011 J Nonnewton Fluid Mech. 1997;72(2-3):305-318.
20. Nakamura M, Kobayashi A, Takagi F, et al. Biocompatible doi: 10.1016/S0377-0257(97)90002-1
inkjet printing technique for designed seeding of individual 33. Shi Y, Ryu DD, Ballica R. Rheological properties of
living cells. Tissue Eng. 2005;11(11-12):1658-1666. mammalian cell culture suspensions: Hybridoma and HeLa
doi: 10.1089/ten.2005.11.1658 cell lines. Biotechnol Bioeng. 1993;41(7):745-754.
21. Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ. doi: 10.1002/bit.260410709
Inkjet-mediated gene transfection into living cells combined 34. Pepper ME, Seshadri V, Burg TC, Burg KJL, Groff RE.
with targeted delivery. Tissue Eng Part A. 2009;15(1):95-101. Characterizing the effects of cell settling on bioprinter
doi: 10.1089/ten.tea.2008.0095 output. Biofabrication. 2012;4(1):011001.
22. Parsa S, Gupta M, Loizeau F, Cheung KC. Effects of doi: 10.1088/1758-5082/4/1/011001
surfactant and gentle agitation on inkjet dispensing of living 35. Wang Z, Belovich JM. A simple apparatus for measuring cell
cells, Biofabrication. 2010;2(2):025003. settling velocity. Biotechnol Progr. 2010;26(5):1361-1366.
23. Xu C, Zhang M, Huang Y, Ogale A, Fu J, Markwald RR. doi: 10.1002/btpr.432
Study of droplet formation process during drop-on- 36. Sendekie ZB, Bacchin P. Colloidal jamming dynamics in
demand inkjetting of living cell-laden bioink. Langmuir. microchannel bottlenecks. Langmuir. 2016;32(6):1478-1488.
2014;30(30):9130-9138. doi: 10.1021/acs.langmuir.5b04218
doi: 10.1021/la501430x
37. Dersoir B, de Saint Vincent MR, Abkarian M, Tabuteau H.
24. Schoendube J, Wright D, Zengerle R, Koltay P. Single-cell Clogging of a single pore by colloidal particles. Microfluid
printing based on impedance detection. Biomicrofluidics. Nanofluid. 2015;19(4):953-961.
2015;9(1). doi: 10.1007/s10404-015-1624-y
25. Ng WL, Huang X, Shkolnikov V, et al. Controlling droplet 38. Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based
impact velocity and droplet volume: Key factors to achieving bio-ink improves cell viability and homogeneity during
high cell viability in sub-nanoliter droplet-based bioprinting. drop-on-demand printing. Materials. 2017;10(2):190, 1-12.
Int J Bioprint. 2022;8(1):424. doi: 10.3390/ma10020190
Volume 10 Issue 2 (2024) 202 doi: 10.36922/ijb.2135

