Page 210 - IJB-10-2
P. 210

International Journal of Bioprinting                                          Optimizing inkjet bioprinting




            13.  Liu  S,  Zhang H,  Ahlfeld T,  et  al.  Evaluation  of  different      doi: 10.18063/ijb.v8i1.424
               crosslinking methods in altering the properties of extrusion-  26.  Huang X, Ng WL, Yeong WY. Predicting the number
               printed chitosan-based multi-material hydrogel composites.   of printed cells during inkjet-based bioprinting process
               Bio-Des Manuf. 2023;6(2):150-173.                  based  on  droplet  velocity  profile  using  machine  learning
               doi: 10.1007/s42242-022-00194-3
                                                                  approaches. J Intell Manuf. 2023;1-16.
            14.  WL Ng, Yeong WY, Naing MW. Polyelectrolyte gelatin-     doi: 10.1007/s10845-023-02167-4
               chitosan hydrogel optimized for 3D bioprinting in skin   27.  Rutgers IR. Relative viscosity of suspensions of rigid spheres
               tissue engineering. Int J Bioprint. 2016;2(1):53-62.  in newtonian liquids. Rheol Acta. 1962;2(3):202-210.
               doi: 10.18063/IJB.2016.01.009                      doi: 10.1007/BF01983952
            15.  Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based   28.  Hsueh C, Wei W. Analyses of effective viscosity of
               bioprinting–process, materials, applications and regulatory   suspensions with deformable polydispersed spheres. J Phys
               challenges. Biofabrication. 2020;12(2):022001.     D: Appl Phys. 2009;42(7):075503.
               doi: 10.1088/1758-5090/ab6034                      doi: 10.1088/0022-3727/42/7/075503

            16.  Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS.   29.  A. Einstein. Eine neue bestimmung der Moleküldimensionen.
               Recent advances in formulating and processing biomaterial   Annalen der Physik. 1906;324(2):289-306.
               inks for vat polymerization‐vased 3D printing. Adv Healthc      doi: 10.1002/andp.19063240204
               Mater. 2020;9(15):2000156.
               doi: 10.1002/adhm.202000156                     30.  Taylor GI. The viscosity of a fluid containing small drops of
                                                                  another fluid, proceedings of the royal society of london.
            17.  Klebe RJ. Cytoscribing: A method for micropositioning   Series A.  Containing Pap of a Math & Phys Character.
               cells and the construction of two-and three-dimensional   1932;138(834):41-48.
               synthetic tissues. Exp Cell Res. 1988;179(2):362-373.     doi: 10.1098/rspa.1932.0169
               doi: 10.1016/0014-4827(88)90275-3
                                                               31.  Wang K, Sun X, Zhang Y,  et al. Characterization of
            18.  Roth EA, Xu T, Das M,  Hickman JJ, Boland T. Inkjet   cytoplasmic viscosity of hundreds of single tumour
               printing for high-throughput cell patterning. Biomaterials.   cells based on micropipette aspiration.  R Soc Open Sci.
               2004;25(17):3707-3715.                             2019;6(3):181707.
               doi: 10.1016/j.biomaterials.2003.10.052            doi: 10.1098/rsos.181707
            19.  Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing   32.  Phan-Thien N, Pham D. Differential multiphase models
               of viable mammalian cells. Biomaterials. 2005;26(1):93-99.  for  polydispersed  suspensions  and  particulate  solids.
               doi: 10.1016/j.biomaterials.2004.04.011            J Nonnewton Fluid Mech. 1997;72(2-3):305-318.
            20.  Nakamura M, Kobayashi A, Takagi F, et al. Biocompatible      doi: 10.1016/S0377-0257(97)90002-1
               inkjet printing technique for designed seeding of individual   33.  Shi Y, Ryu DD, Ballica R. Rheological properties of
               living cells. Tissue Eng. 2005;11(11-12):1658-1666.  mammalian cell culture suspensions: Hybridoma and HeLa
               doi: 10.1089/ten.2005.11.1658                      cell lines. Biotechnol Bioeng. 1993;41(7):745-754.
            21.  Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ.      doi: 10.1002/bit.260410709
               Inkjet-mediated gene transfection into living cells combined   34.  Pepper ME, Seshadri V, Burg TC,  Burg KJL, Groff RE.
               with targeted delivery. Tissue Eng Part A. 2009;15(1):95-101.  Characterizing the effects of cell settling on bioprinter
               doi: 10.1089/ten.tea.2008.0095                     output. Biofabrication. 2012;4(1):011001.
            22.  Parsa S, Gupta M, Loizeau F,  Cheung KC. Effects of      doi: 10.1088/1758-5082/4/1/011001
               surfactant and gentle agitation on inkjet dispensing of living   35.  Wang Z, Belovich JM. A simple apparatus for measuring cell
               cells, Biofabrication. 2010;2(2):025003.           settling velocity. Biotechnol Progr. 2010;26(5):1361-1366.
            23.  Xu C, Zhang M, Huang Y,  Ogale A, Fu J, Markwald RR.      doi: 10.1002/btpr.432
               Study of droplet formation process during drop-on-  36.  Sendekie ZB, Bacchin P. Colloidal jamming dynamics in
               demand  inkjetting  of  living  cell-laden  bioink.  Langmuir.   microchannel bottlenecks. Langmuir. 2016;32(6):1478-1488.
               2014;30(30):9130-9138.                             doi: 10.1021/acs.langmuir.5b04218
               doi: 10.1021/la501430x
                                                               37.  Dersoir B, de Saint Vincent MR, Abkarian M, Tabuteau H.
            24.  Schoendube J, Wright D, Zengerle R, Koltay P. Single-cell   Clogging of a single pore by colloidal particles. Microfluid
               printing based on impedance detection.  Biomicrofluidics.   Nanofluid. 2015;19(4):953-961.
               2015;9(1).                                         doi: 10.1007/s10404-015-1624-y
            25.  Ng WL, Huang X, Shkolnikov V, et al. Controlling droplet   38.  Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based
               impact velocity and droplet volume: Key factors to achieving   bio-ink improves cell viability and homogeneity during
               high cell viability in sub-nanoliter droplet-based bioprinting.   drop-on-demand printing. Materials. 2017;10(2):190, 1-12.
               Int J Bioprint. 2022;8(1):424.                     doi: 10.3390/ma10020190

            Volume 10 Issue 2 (2024)                       202                                doi: 10.36922/ijb.2135
   205   206   207   208   209   210   211   212   213   214   215