Page 212 - IJB-10-2
P. 212
International Journal of Bioprinting Optimizing inkjet bioprinting
66. Furbank RJ, Morris JF. Pendant drop thread dynamics of 80. Ng WL, Huang X, Shkolnikov V, Suntornnond R.
particle-laden liquids. Int J Multiphase Flow. 2007;33(4): Polyvinylpyrrolidone-based bioink: Influence of bioink
448-468. properties on printing performance and cell proliferation
doi: 10.1016/j.ijmultiphaseflow.2006.02.021 during inkjet-based bioprinting. Bio-Des Manuf. 2023;6:
676-690.
67. Rioboo R, Tropea C, Marengo M. Outcomes from a drop
impact on solid surfaces. Atomization Sprays. 2001;11(2). doi: 10.1007/s42242-023-00245-3
doi: 10.1615/AtomizSpr.v11.i2.40 81. Guémas M, Marín ÁG, Lohse D. Drop impact experiments
of non-Newtonian liquids on micro-structured surfaces.
68. Liu Y, Yan X, Wang Z. Droplet dynamics on slippery surfaces:
small droplet, big impact. Biosurface and Biotribology. Soft Matter. 2012;8(41):10725-10731.
2019;5(2):35-45. doi: 10.1039/C2SM26230D
doi: 10.1049/bsbt.2019.0004 82. An SM, Lee SY. Maximum spreading of a shear-thinning
liquid drop impacting on dry solid surfaces. Exp Therm
69. Rein M. Phenomena of liquid drop impact on solid and
liquid surfaces. Fluid Dyn Res. 1993;12(2):61-93. Fluid Sci. 2012;38:140-148.
doi: 10.1016/0169-5983(93)90106-K doi: 10.1016/j.expthermflusci.2011.12.003
83. Nicolas M. Spreading of a drop of neutrally buoyant
70. Fedorchenko AI, Wang A-B. On some common features suspension. J Fluid Mech. 2005;545:271-280.
of drop impact on liquid surfaces. Phys Fluids. 2004;16(5): doi: 10.1017/S0022112005006944
1349-1365.
doi: 10.1063/1.1652061 84. Chen X, O’Mahony AP, Barber T. Spreading behavior of
cell-laden droplets in 3D bioprinting process. J Appl Phys
71. Zou J, Wang PF, Zhang TR, Fu Xin, Ruan X. Experimental 2023;133(1).
study of a drop bouncing on a liquid surface. Phys Fluids. doi: 10.1063/5.0130063
2011;23(4).
doi: 10.1063/1.3575298 85. He P, Liu Y, Qiao R. Fluid dynamics of the droplet impact
processes in cell printing. Microfluid Nanofluid. 2015;18:
72. Leng LJ. Splash formation by spherical drops, J Fluid Mech. 569-585.
2001;427:73-105. doi: 10.1007/s10404-014-1470-3
doi: 10.1017/S0022112000002500
86. Suntornnond R, Ng WL, Huang X, Ethan Yeowa CH, Yee
73. Bach GA, Koch DL, Gopinath A. Coalescence and bouncing Yeong Wai. Improving printability of hydrogel-based
of small aerosol droplets. J Fluid Mech. 2004;518:157-185. bio-inks for thermal inkjet bioprinting applications via
doi: 10.1017/S0022112004000928
saponification and heat treatment process. J Mater Chem B.
74. Frith WJ, d’Haene P, Buscall R, Mewis J. Shear thickening in 2022;10(31):5989-6000.
model suspensions of sterically stabilized particles. J Rheol. doi: 10.1039/D2TB00442A
1996;40(4):531-548.
doi: 10.1122/1.550791 87. Ng WL, Lee JM, Zhou M, Yeong WY. Hydrogels for 3-D
bioprinting-based tissue engineering. In: Narayan R, ed.
75. German G, Bertola V. Impact of shear-thinning and yield- Rapid Prototyping of Biomaterials. Chapel Hill, NC: Elsevier;
stress drops on solid substrates. J Phys Condens Matter 2020: 183-204.
2009;21(37):375111.
doi: 10.1088/0953-8984/21/37/375111 88. Tibbitt MW, Anseth KS. Hydrogels as extracellular
matrix mimics for 3D cell culture. Biotechnol Bioeng.
76. Bertola V, Marengo M. Single drop impacts of complex 2009;103(4):655-663.
fluids: a review. In: Ferrari M, Liggieri L, Miller R, eds. Drops doi: 10.1002/bit.22361
and Bubbles in Contact with Solid Surfaces. Florida, United
States: Taylor & Francis(CRC Press); 2012: 267-298. 89. Blache U, Ford EM, Ha B, et al. Engineered hydrogels for
mechanobiology. Nat Rev Methods Primers. 2022;2(1):98.
77. Bergeron V, Bonn D, Martin JY, Vovelle L. Controlling doi: 10.1038/s43586-022-00179-7
droplet deposition with polymer additives. Nature. 90. Loh QL, Choong C. Three-dimensional scaffolds for tissue
2000;405(6788):772-775. engineering applications: role of porosity and pore size,
doi: 10.1038/35015525
Tissue Eng Part B: Reviews. 2013;19(6):485-502.
78. Bergeron V. Designing intelligent fluids for controlling spray doi: 10.1089/ten.teb.2012.0437
applications. C R Phys. 2003;4(2):211-219. 91. Ng WL, Goh MH, Yeong WY, Naing MW. Applying
doi: 10.1016/S1631-0705(03)00043-4
Macromolecular Crowding to 3D Bioprinting: Fabrication
79. Vega E, Castrejón-Pita A. Suppressing prompt splash with of 3D Hierarchical Porous Collagen-based Hydrogel
polymer additives. Exp Fluids. 2017;58(5):57. Constructs. Biomater Sci. 2018;6(3):562-574.
doi: 10.1007/s00348-017-2341-y doi: 10.1039/C7BM01015J
Volume 10 Issue 2 (2024) 204 doi: 10.36922/ijb.2135

