Page 212 - IJB-10-2
P. 212

International Journal of Bioprinting                                          Optimizing inkjet bioprinting




            66.  Furbank RJ, Morris JF. Pendant drop thread dynamics of   80.  Ng WL, Huang X, Shkolnikov V,  Suntornnond R.
               particle-laden liquids.  Int J Multiphase Flow. 2007;33(4):   Polyvinylpyrrolidone-based bioink: Influence  of bioink
               448-468.                                           properties on printing performance and cell proliferation
               doi: 10.1016/j.ijmultiphaseflow.2006.02.021        during inkjet-based bioprinting.  Bio-Des Manuf. 2023;6:
                                                                  676-690.
            67.  Rioboo R, Tropea C, Marengo M. Outcomes from a drop
               impact on solid surfaces. Atomization Sprays. 2001;11(2).     doi: 10.1007/s42242-023-00245-3
               doi: 10.1615/AtomizSpr.v11.i2.40                81.  Guémas M, Marín ÁG, Lohse D. Drop impact experiments
                                                                  of  non-Newtonian  liquids  on  micro-structured  surfaces.
            68.  Liu Y, Yan X, Wang Z. Droplet dynamics on slippery surfaces:
               small droplet, big impact.  Biosurface and Biotribology.   Soft Matter. 2012;8(41):10725-10731.
               2019;5(2):35-45.                                   doi: 10.1039/C2SM26230D
               doi: 10.1049/bsbt.2019.0004                     82.  An SM, Lee SY. Maximum spreading of a shear-thinning
                                                                  liquid drop impacting on dry solid surfaces.  Exp Therm
            69.  Rein M. Phenomena of liquid drop impact on solid and
               liquid surfaces. Fluid Dyn Res. 1993;12(2):61-93.  Fluid Sci. 2012;38:140-148.
               doi: 10.1016/0169-5983(93)90106-K                  doi: 10.1016/j.expthermflusci.2011.12.003
                                                               83.  Nicolas M. Spreading of a drop of neutrally buoyant
            70.  Fedorchenko AI, Wang A-B. On some common features   suspension. J Fluid Mech. 2005;545:271-280.
               of drop impact on liquid surfaces. Phys Fluids. 2004;16(5):      doi: 10.1017/S0022112005006944
               1349-1365.
               doi: 10.1063/1.1652061                          84.  Chen X, O’Mahony AP, Barber T. Spreading behavior of
                                                                  cell-laden droplets in 3D bioprinting process. J Appl Phys
            71.  Zou J, Wang PF, Zhang TR, Fu Xin, Ruan X. Experimental   2023;133(1).
               study of a drop bouncing on a liquid surface. Phys Fluids.      doi: 10.1063/5.0130063
               2011;23(4).
               doi: 10.1063/1.3575298                          85.  He P, Liu Y, Qiao R. Fluid dynamics of the droplet impact
                                                                  processes in cell printing.  Microfluid Nanofluid. 2015;18:
            72.  Leng LJ. Splash formation by spherical drops, J Fluid Mech.   569-585.
               2001;427:73-105.                                   doi: 10.1007/s10404-014-1470-3
               doi: 10.1017/S0022112000002500
                                                               86.  Suntornnond R, Ng WL, Huang X, Ethan Yeowa CH, Yee
            73.  Bach GA, Koch DL, Gopinath A. Coalescence and bouncing   Yeong Wai. Improving printability of hydrogel-based
               of small aerosol droplets. J Fluid Mech. 2004;518:157-185.  bio-inks for thermal inkjet bioprinting applications via
               doi: 10.1017/S0022112004000928
                                                                  saponification and heat treatment process. J Mater Chem B.
            74.  Frith WJ, d’Haene P, Buscall R, Mewis J. Shear thickening in   2022;10(31):5989-6000.
               model suspensions of sterically stabilized particles. J Rheol.      doi: 10.1039/D2TB00442A
               1996;40(4):531-548.
               doi: 10.1122/1.550791                           87.  Ng WL, Lee JM, Zhou M, Yeong WY. Hydrogels for 3-D
                                                                  bioprinting-based tissue engineering. In: Narayan R, ed.
            75.  German G, Bertola V. Impact of shear-thinning and yield-  Rapid Prototyping of Biomaterials. Chapel Hill, NC: Elsevier;
               stress drops on solid substrates.  J Phys Condens Matter   2020: 183-204.
               2009;21(37):375111.
               doi: 10.1088/0953-8984/21/37/375111             88.  Tibbitt MW, Anseth KS. Hydrogels as extracellular
                                                                  matrix mimics for 3D cell culture.  Biotechnol Bioeng.
            76.  Bertola V, Marengo M. Single drop impacts of complex   2009;103(4):655-663.
               fluids: a review. In: Ferrari M, Liggieri L, Miller R, eds. Drops      doi: 10.1002/bit.22361
               and Bubbles in Contact with Solid Surfaces. Florida, United
               States: Taylor & Francis(CRC Press); 2012: 267-298.  89.  Blache U, Ford EM, Ha B, et al. Engineered hydrogels for
                                                                  mechanobiology. Nat Rev Methods Primers. 2022;2(1):98.
            77.  Bergeron V, Bonn D, Martin JY,  Vovelle L. Controlling      doi: 10.1038/s43586-022-00179-7
               droplet deposition with polymer additives.  Nature.   90.  Loh QL, Choong C. Three-dimensional scaffolds for tissue
               2000;405(6788):772-775.                            engineering applications: role of porosity and pore size,
               doi: 10.1038/35015525
                                                                  Tissue Eng Part B: Reviews. 2013;19(6):485-502.
            78.  Bergeron V. Designing intelligent fluids for controlling spray      doi: 10.1089/ten.teb.2012.0437
               applications. C R Phys. 2003;4(2):211-219.      91.  Ng WL, Goh MH, Yeong WY,  Naing MW. Applying
               doi: 10.1016/S1631-0705(03)00043-4
                                                                  Macromolecular Crowding to 3D Bioprinting: Fabrication
            79.  Vega E, Castrejón-Pita A. Suppressing prompt splash with   of 3D Hierarchical Porous Collagen-based Hydrogel
               polymer additives. Exp Fluids. 2017;58(5):57.      Constructs. Biomater Sci. 2018;6(3):562-574.
               doi: 10.1007/s00348-017-2341-y                     doi: 10.1039/C7BM01015J




            Volume 10 Issue 2 (2024)                       204                                doi: 10.36922/ijb.2135
   207   208   209   210   211   212   213   214   215   216   217