Page 234 - IJB-10-2
P. 234
International Journal of Bioprinting Property of scaffolds with different lattices
21. Yan L, Wu J, Zhang L, Liu X, Zhou K, Su B. Pore structures doi: 10.1016/j.jmbbm.2018.04.010
and mechanical properties of porous titanium scaffolds by 33. Zaharin HA, Abdul RA, Azam FI, et al. Effect of unit cell
bidirectional freeze casting. Mater Sci Eng C Mater Biol Appl. type and pore size on porosity and mechanical behavior
2017;75:335-340. of additively manufactured Ti6Al4V scaffolds. Materials
doi: 10.1016/j.msec.2016.12.044
(Basel). 2018;11(12).
22. Dziaduszewska M, Zielinski A. Structural and material doi: 10.3390%2Fma11122402
determinants influencing the behavior of porous ti and 34. Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of
its alloys made by additive manufacturing techniques for pore size on bone ingrowth into porous titanium implants
biomedical applications. Materials (Basel). 2021;14(4). fabricated by additive manufacturing: An in vivo experiment.
doi: 10.3390/ma14040712
Mater Sci Eng C Mater Biol Appl. 2016;59:690-701.
23. Xu Z, Zhang Y, Wu Y, et al. In vitro and in vivo analysis of the doi: 10.1016/j.msec.2015.10.069
effects of 3D-printed porous titanium alloy scaffold structure 35. Lu Y, Cheng L, Yang Z, Li J, Zhu H. Relationship between
on osteogenic activity. Biomed Res Int. 2022;2022:8494431. the morphological, mechanical and permeability properties
doi: 10.1155/2022/8494431
of porous bone scaffolds and the underlying microstructure.
24. Wang H, Su K, Su L, Liang P, Ji P, Wang C. Comparison PLoS One. 2020;15(9):e238471.
of 3D-printed porous tantalum and titanium scaffolds on doi: 10.1371%2Fjournal.pone.0238471
osteointegration and osteogenesis. Mater Sci Eng C Mater 36. Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous
Biol Appl. 2019;104:109908. scaffold design for additive manufacturing in orthopedics:
doi: 10.1016/j.msec.2019.109908
A review. Front Bioeng Biotechnol. 2020;8:609.
25. Yang J, Li Y, Shi X, et al. Design and analysis of three- doi: 10.3389/fbioe.2020.00609
dimensional printing of a porous titanium scaffold. BMC 37. Li X, Wang Y, Zhang B, et al. The design and evaluation of
Musculoskelet Disord. 2021;22(1):654. bionic porous bone scaffolds in fluid flow characteristics and
doi: 10.1186/s12891-021-04520-1
mechanical properties. Comput Methods Programs Biomed.
26. Afrouzian A, Groden CJ, Field DP, Bose S, Bandyopadhyay A. 2022;225:107059.
Additive manufacturing of Ti-Ni bimetallic structures. Mater doi: 10.1016/j.cmpb.2022.107059
Des. 2022;215. 38. Omar AM, Hassan MH, Daskalakis E, et al. Geometry-
doi: 10.1016%2Fj.matdes.2022.110461
based computational fluid dynamic model for predicting
27. Huang G, Pan ST, Qiu JX. The osteogenic effects of porous the biological behavior of bone tissue engineering scaffolds.
Tantalum and Titanium alloy scaffolds with different unit J Funct Biomater. 2022;13(3).
cell structure. Colloids Surf B Biointerfaces. 2022;210:112229. doi: 10.3390/jfb13030104
doi: 10.1016/j.colsurfb.2021.112229
39. Chao L, Jiao C, Liang H, Xie D, Shen L, Liu Z. Analysis of
28. Ciliveri S, Bandyopadhyay A. Influence of strut-size and cell- mechanical properties and permeability of trabecular-like
size variations on porous Ti6Al4V structures for load-bearing porous scaffold by additive manufacturing. Front Bioeng
implants. J Mech Behav Biomed Mater. 2022;126:105023. Biotechnol. 2021;9:779854.
doi: 10.1016/j.jmbbm.2021.105023 doi: 10.3389%2Ffbioe.2021.779854
29. Deng F, Liu L, Li Z, Liu J. 3D printed Ti6Al4V bone scaffolds 40. Zhang C, Zhu H, Ren X, et al. Mechanics-driven nuclear
with different pore structure effects on bone ingrowth. J Biol localization of YAP can be reversed by N-cadherin ligation
Eng. 2021;15(1):4. in mesenchymal stem cells. Nat Commun. 2021;12(1):6229.
doi: 10.1186/s13036-021-00255-8 doi: 10.1038/s41467-021-26454-x
30. Lei H, Yi T, Fan H, et al. Customized additive manufacturing 41. Zhang Z, Sha B, Zhao L, et al. Programmable integrin and
of porous Ti6Al4V scaffold with micro-topological structures N-cadherin adhesive interactions modulate mechanosensing
to regulate cell behavior in bone tissue engineering. of mesenchymal stem cells by cofilin phosphorylation.
Mater Sci Eng C Mater Biol Appl. 2021;120:111789. Nat Commun. 2022;13(1):6854.
doi: 10.1016/j.msec.2020.111789 doi: 10.1038/s41467-022-34424-0
31. Suresh S, Sun CN, Tekumalla S, Rosa V, Ling Nai SM, Wen Wong 42. De Belly H, Paluch EK, Chalut KJ. Interplay between
RC. Mechanical properties and in vitro cytocompatibility of mechanics and signalling in regulating cell fate. Nat Rev Mol
dense and porous Ti-6Al-4V ELI manufactured by selective Cell Biol. 2022;23(7):465-480.
laser melting technology for biomedical applications. J Mech doi: 10.1038/s41580-022-00472-z
Behav Biomed Mater. 2021;123:104712. 43. Truscello S, Kerckhofs G, Van Bael S, Pyka G, Schrooten J, Van
doi: 10.1016/j.jmbbm.2021.104712
Oosterwyck H. Prediction of permeability of regular scaffolds
32. Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed for skeletal tissue engineering: A combined computational and
porous Ti6Al4V implants with different pore sizes. experimental study. Acta Biomater. 2012;8(4):1648-1658.
J Mech Behav Biomed Mater. 2018;84:1-11. doi: 10.1016/j.actbio.2011.12.021
Volume 10 Issue 2 (2024) 226 doi: 10.36922/ijb.1698

