Page 234 - IJB-10-2
P. 234

International Journal of Bioprinting                                Property of scaffolds with different lattices




            21.  Yan L, Wu J, Zhang L, Liu X, Zhou K, Su B. Pore structures      doi: 10.1016/j.jmbbm.2018.04.010
               and mechanical properties of porous titanium scaffolds by   33.   Zaharin HA, Abdul RA, Azam FI, et al. Effect of unit cell
               bidirectional freeze casting. Mater Sci Eng C Mater Biol Appl.   type and pore size on porosity and mechanical behavior
               2017;75:335-340.                                   of additively manufactured Ti6Al4V scaffolds.  Materials
               doi: 10.1016/j.msec.2016.12.044
                                                                  (Basel). 2018;11(12).
            22.  Dziaduszewska M, Zielinski A. Structural and material      doi: 10.3390%2Fma11122402
               determinants influencing  the behavior  of porous ti  and   34.   Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of
               its alloys made by additive manufacturing techniques for   pore size on bone ingrowth into porous titanium implants
               biomedical applications. Materials (Basel). 2021;14(4).   fabricated by additive manufacturing: An in vivo experiment.
               doi: 10.3390/ma14040712
                                                                  Mater Sci Eng C Mater Biol Appl. 2016;59:690-701.
            23.  Xu Z, Zhang Y, Wu Y, et al. In vitro and in vivo analysis of the      doi: 10.1016/j.msec.2015.10.069
               effects of 3D-printed porous titanium alloy scaffold structure   35.   Lu Y, Cheng L, Yang Z, Li J, Zhu H. Relationship between
               on osteogenic activity. Biomed Res Int. 2022;2022:8494431.   the morphological, mechanical and permeability properties
               doi: 10.1155/2022/8494431
                                                                  of porous bone scaffolds and the underlying microstructure.
            24.  Wang H, Su K, Su L, Liang P, Ji P, Wang C. Comparison   PLoS One. 2020;15(9):e238471.
               of 3D-printed porous tantalum and titanium scaffolds on      doi: 10.1371%2Fjournal.pone.0238471
               osteointegration and osteogenesis. Mater Sci Eng C Mater   36.   Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous
               Biol Appl. 2019;104:109908.                        scaffold design for additive manufacturing in orthopedics:
               doi: 10.1016/j.msec.2019.109908
                                                                  A review. Front Bioeng Biotechnol. 2020;8:609.
            25.  Yang J, Li Y, Shi X, et al. Design and analysis of three-     doi: 10.3389/fbioe.2020.00609
               dimensional printing of a porous titanium scaffold. BMC   37.   Li X, Wang Y, Zhang B, et al. The design and evaluation of
               Musculoskelet Disord. 2021;22(1):654.              bionic porous bone scaffolds in fluid flow characteristics and
               doi: 10.1186/s12891-021-04520-1
                                                                  mechanical properties. Comput Methods Programs Biomed.
            26.  Afrouzian A, Groden CJ, Field DP, Bose S, Bandyopadhyay A.   2022;225:107059.
               Additive manufacturing of Ti-Ni bimetallic structures. Mater      doi: 10.1016/j.cmpb.2022.107059
               Des. 2022;215.                                  38.   Omar AM, Hassan MH, Daskalakis E, et al. Geometry-
               doi: 10.1016%2Fj.matdes.2022.110461
                                                                  based computational fluid dynamic model for predicting
            27.  Huang G, Pan ST, Qiu JX. The osteogenic effects of porous   the biological behavior of bone tissue engineering scaffolds.
               Tantalum and Titanium alloy scaffolds with different unit   J Funct Biomater. 2022;13(3).
               cell structure. Colloids Surf B Biointerfaces. 2022;210:112229.     doi: 10.3390/jfb13030104
               doi: 10.1016/j.colsurfb.2021.112229
                                                               39.   Chao L, Jiao C, Liang H, Xie D, Shen L, Liu Z. Analysis of
            28.   Ciliveri S, Bandyopadhyay A. Influence of strut-size and cell-  mechanical properties and permeability of trabecular-like
               size variations on porous Ti6Al4V structures for load-bearing   porous  scaffold  by  additive  manufacturing.  Front Bioeng
               implants. J Mech Behav Biomed Mater. 2022;126:105023.   Biotechnol. 2021;9:779854.
               doi: 10.1016/j.jmbbm.2021.105023                   doi: 10.3389%2Ffbioe.2021.779854
            29.   Deng F, Liu L, Li Z, Liu J. 3D printed Ti6Al4V bone scaffolds   40.   Zhang C, Zhu H, Ren X, et al. Mechanics-driven nuclear
               with different pore structure effects on bone ingrowth. J Biol   localization of YAP can be reversed by N-cadherin ligation
               Eng. 2021;15(1):4.                                 in mesenchymal stem cells. Nat Commun. 2021;12(1):6229.
               doi: 10.1186/s13036-021-00255-8                    doi: 10.1038/s41467-021-26454-x
            30.   Lei H, Yi T, Fan H, et al. Customized additive manufacturing   41.   Zhang Z, Sha B, Zhao L, et al. Programmable integrin and
               of porous Ti6Al4V scaffold with micro-topological structures   N-cadherin adhesive interactions modulate mechanosensing
               to regulate cell behavior in bone tissue engineering.    of mesenchymal stem cells by cofilin phosphorylation.
               Mater Sci Eng C Mater Biol Appl. 2021;120:111789.    Nat Commun. 2022;13(1):6854.
               doi: 10.1016/j.msec.2020.111789                    doi: 10.1038/s41467-022-34424-0
            31.   Suresh S, Sun CN, Tekumalla S, Rosa V, Ling Nai SM, Wen Wong   42.   De Belly H, Paluch EK, Chalut KJ. Interplay between
               RC. Mechanical properties and in vitro cytocompatibility of   mechanics and signalling in regulating cell fate. Nat Rev Mol
               dense and porous Ti-6Al-4V ELI manufactured by selective   Cell Biol. 2022;23(7):465-480.
               laser melting technology for biomedical applications. J Mech      doi: 10.1038/s41580-022-00472-z
               Behav Biomed Mater. 2021;123:104712.            43.   Truscello S, Kerckhofs G, Van Bael S, Pyka G, Schrooten J, Van
               doi: 10.1016/j.jmbbm.2021.104712
                                                                  Oosterwyck H. Prediction of permeability of regular scaffolds
            32.   Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed   for skeletal tissue engineering: A combined computational and
               porous Ti6Al4V implants with different pore sizes.    experimental study. Acta Biomater. 2012;8(4):1648-1658.
               J Mech Behav Biomed Mater. 2018;84:1-11.           doi: 10.1016/j.actbio.2011.12.021

            Volume 10 Issue 2 (2024)                       226                                doi: 10.36922/ijb.1698
   229   230   231   232   233   234   235   236   237   238   239