Page 233 - IJB-10-2
P. 233

International Journal of Bioprinting                                Property of scaffolds with different lattices





            Availability of data                               10.  Meena VK, Kalra P, Sinha RK. Finite element study on the
                                                                  influence of pore size and structure on stress shielding effect
            The data used in this work, including 3D model of the   of additive manufactured spinal cage.  Comput Methods
            porous scaffold, can be obtained from the corresponding   Biomech Biomed Engin. 2022;25(5):566-577.
            authors upon reasonable request.                      doi: 10.1080/10255842.2021.1970142
                                                               11.  Al-Tamimi AA. 3D topology optimization and mesh
            References                                            dependency for redesigning locking compression plates
                                                                  aiming to reduce stress shielding. Int J Bioprint. 2021;7(3):339.
            1.   Neto MQ, Radice S, Hall DJ, et al. Microstructure and      doi: 10.18063/ijb.v7i3.339
               electrochemical behavior of contemporary Ti6Al4V implant
               alloys. J Bio Tribocorros. 2022;8(1).           12.  Han X, Ma J, Tian A, et al. Surface modification techniques
               doi: 10.1007/s40735-021-00623-3                    of titanium and titanium alloys for biomedical orthopaedics
                                                                  applications: A review.  Colloids Surf B Biointerfaces.
            2.   Xi D, Wong L. Titanium and implantology: A review in   2023;227:113339.
               dentistry. J Biol Regul Homeost Agents. 2021;35(1 Suppl. 1):63-     doi: 10.1016/j.colsurfb.2023.113339
               72.
               doi: 10.3390%2Fma15093150                       13.  Xia C, Ma X, Zhang X, et al. Enhanced physicochemical and
                                                                  biological properties of C/Cu dual ions implanted medical
            3.   Gkiatas I, Sharma AK, Driscoll DA, McLawhorn AS,   titanium. Bioact Mater. 2020;5(2):377-386.
               Chalmers BP, Sculco PK. Nonconcentric and irregular      doi: 10.1016/j.bioactmat.2020.02.017
               dislocations of total hip arthroplasties: Radiographic analysis
               and review of the literature.  J Emerg Med. 2021;60(4):   14.  Wang Q, Zhou P, Liu S, et al. 2020, Multi-scale surface
               451-459.                                           treatments of titanium implants for rapid osseointegration:
               doi: 10.1016/j.jemermed.2020.11.023                A review. Nanomaterials (Basel), 10(6).
                                                                  doi: 10.3390%2Fnano10061244
            4.   Liu T, Hua X, Yu W, et al. Long-term follow-up outcomes
               for  patients undergoing  primary  total  hip  arthroplasty   15.  Wang  L,  Zhou  W,  Yu  Z,  et  al.  An  in  vitro  evaluation
               with uncemented versus cemented femoral components: A   of the hierarchical micro/nanoporous structure of a
               retrospective observational study with a 5-year minimum   Ti3Zr2Sn3Mo25Nb alloy after surface dealloying. ACS Appl
               follow-up. J Orthop Surg Res. 2019;14(1):371.      Mater Interfaces. 2021;13(13):15017-15030.
               doi: 10.1186/s13018-019-1415-3                     doi: 10.1021/acsami.1c02140
            5.   Raja BS, Gowda A, Singh S, Ansari S, Kalia RB, Paul S.   16.  Wang R, Ni S, Ma L, Li M. Porous construction and
               Comparison of functional outcomes and complications   surface modification of titanium-based materials for
               of cemented vs uncemented total hip arthroplasty in the   osteogenesis: A review.  Front Bioeng Biotechnol.  2022;
               elderly neck of femur fracture patients: A systematic review   10:973297.
               and meta-analysis. J Clin Orthop Trauma. 2022;29:101876.      doi: 10.3389%2Ffbioe.2022.973297
               doi: 10.1016%2Fj.jcot.2022.101876               17.  Liverani E, Rogati G, Pagani S,  Brogini  S, Fortunato A,
            6.   Bittredge O, Hassanin H, El-Sayed MA, et al. Fabrication and   Caravaggi P. Mechanical interaction between additive-
               optimisation of Ti-6Al-4V lattice-structured total shoulder   manufactured metal lattice structures and bone in
               implants using laser additive manufacturing.  Materials   compression: Implications for stress shielding of orthopaedic
               (Basel). 2022;15(9).                               implants. J Mech Behav Biomed Mater. 2021;121:104608.
               doi: 10.3390/ma15093095                            doi: 10.1016/j.jmbbm.2021.104608
            7.   Ito K, Mori Y, Kamimura M, et al. Beta-type TiNbSn alloy   18.  Arabnejad S, Johnston B, Tanzer M, Pasini D. Fully porous
               plates with low Young modulus accelerates osteosynthesis in   3D printed titanium femoral stem to reduce stress-shielding
               Rabbit Tibiae. Clin Orthop Relat Res. 2022;480(9):1817-1832.   following total hip arthroplasty. J Orthop Res.  2017;
               doi: 10.1097/corr.0000000000002240                 35(8):1774-1783.
                                                                  doi: 10.1002/jor.23445
            8.   Lei  P,  Qian  H,  Zhang  T,  et  al.  Porous  tantalum  structure
               integrated  on Ti6Al4V  base  by laser  powder  bed  fusion   19.  Yao YT, Yang Y, Ye Q, et al. Effects of pore size and porosity
               for enhanced bony-ingrowth implants: In vitro and in vivo   on  cytocompatibility  and  osteogenic  differentiation  of
               validation. Bioact Mater. 2022;7:3-13.             porous titanium. J Mater Sci Mater Med. 2021;32(6):72.
               doi: 10.1016/j.bioactmat.2021.05.025               doi: 10.1007/s10856-021-06548-0
            9.   Li L, Li Y, Yang L, et al. Polydopamine coating promotes   20.  Cuan-Urquizo E, Silva RG. Fused filament fabrication
               early osteogenesis in 3D printing porous Ti6Al4V scaffolds.   of cellular, lattice and porous mechanical metamaterials:
               Ann Transl Med. 2019;7(11):240.                    A review. Virtual Phys Prototyp. 2023;1(18):e2224300.
               doi: 10.21037/atm.2019.04.79                       doi: 10.1080/17452759.2023.2224300



            Volume 10 Issue 2 (2024)                       225                                doi: 10.36922/ijb.1698
   228   229   230   231   232   233   234   235   236   237   238