Page 233 - IJB-10-2
P. 233
International Journal of Bioprinting Property of scaffolds with different lattices
Availability of data 10. Meena VK, Kalra P, Sinha RK. Finite element study on the
influence of pore size and structure on stress shielding effect
The data used in this work, including 3D model of the of additive manufactured spinal cage. Comput Methods
porous scaffold, can be obtained from the corresponding Biomech Biomed Engin. 2022;25(5):566-577.
authors upon reasonable request. doi: 10.1080/10255842.2021.1970142
11. Al-Tamimi AA. 3D topology optimization and mesh
References dependency for redesigning locking compression plates
aiming to reduce stress shielding. Int J Bioprint. 2021;7(3):339.
1. Neto MQ, Radice S, Hall DJ, et al. Microstructure and doi: 10.18063/ijb.v7i3.339
electrochemical behavior of contemporary Ti6Al4V implant
alloys. J Bio Tribocorros. 2022;8(1). 12. Han X, Ma J, Tian A, et al. Surface modification techniques
doi: 10.1007/s40735-021-00623-3 of titanium and titanium alloys for biomedical orthopaedics
applications: A review. Colloids Surf B Biointerfaces.
2. Xi D, Wong L. Titanium and implantology: A review in 2023;227:113339.
dentistry. J Biol Regul Homeost Agents. 2021;35(1 Suppl. 1):63- doi: 10.1016/j.colsurfb.2023.113339
72.
doi: 10.3390%2Fma15093150 13. Xia C, Ma X, Zhang X, et al. Enhanced physicochemical and
biological properties of C/Cu dual ions implanted medical
3. Gkiatas I, Sharma AK, Driscoll DA, McLawhorn AS, titanium. Bioact Mater. 2020;5(2):377-386.
Chalmers BP, Sculco PK. Nonconcentric and irregular doi: 10.1016/j.bioactmat.2020.02.017
dislocations of total hip arthroplasties: Radiographic analysis
and review of the literature. J Emerg Med. 2021;60(4): 14. Wang Q, Zhou P, Liu S, et al. 2020, Multi-scale surface
451-459. treatments of titanium implants for rapid osseointegration:
doi: 10.1016/j.jemermed.2020.11.023 A review. Nanomaterials (Basel), 10(6).
doi: 10.3390%2Fnano10061244
4. Liu T, Hua X, Yu W, et al. Long-term follow-up outcomes
for patients undergoing primary total hip arthroplasty 15. Wang L, Zhou W, Yu Z, et al. An in vitro evaluation
with uncemented versus cemented femoral components: A of the hierarchical micro/nanoporous structure of a
retrospective observational study with a 5-year minimum Ti3Zr2Sn3Mo25Nb alloy after surface dealloying. ACS Appl
follow-up. J Orthop Surg Res. 2019;14(1):371. Mater Interfaces. 2021;13(13):15017-15030.
doi: 10.1186/s13018-019-1415-3 doi: 10.1021/acsami.1c02140
5. Raja BS, Gowda A, Singh S, Ansari S, Kalia RB, Paul S. 16. Wang R, Ni S, Ma L, Li M. Porous construction and
Comparison of functional outcomes and complications surface modification of titanium-based materials for
of cemented vs uncemented total hip arthroplasty in the osteogenesis: A review. Front Bioeng Biotechnol. 2022;
elderly neck of femur fracture patients: A systematic review 10:973297.
and meta-analysis. J Clin Orthop Trauma. 2022;29:101876. doi: 10.3389%2Ffbioe.2022.973297
doi: 10.1016%2Fj.jcot.2022.101876 17. Liverani E, Rogati G, Pagani S, Brogini S, Fortunato A,
6. Bittredge O, Hassanin H, El-Sayed MA, et al. Fabrication and Caravaggi P. Mechanical interaction between additive-
optimisation of Ti-6Al-4V lattice-structured total shoulder manufactured metal lattice structures and bone in
implants using laser additive manufacturing. Materials compression: Implications for stress shielding of orthopaedic
(Basel). 2022;15(9). implants. J Mech Behav Biomed Mater. 2021;121:104608.
doi: 10.3390/ma15093095 doi: 10.1016/j.jmbbm.2021.104608
7. Ito K, Mori Y, Kamimura M, et al. Beta-type TiNbSn alloy 18. Arabnejad S, Johnston B, Tanzer M, Pasini D. Fully porous
plates with low Young modulus accelerates osteosynthesis in 3D printed titanium femoral stem to reduce stress-shielding
Rabbit Tibiae. Clin Orthop Relat Res. 2022;480(9):1817-1832. following total hip arthroplasty. J Orthop Res. 2017;
doi: 10.1097/corr.0000000000002240 35(8):1774-1783.
doi: 10.1002/jor.23445
8. Lei P, Qian H, Zhang T, et al. Porous tantalum structure
integrated on Ti6Al4V base by laser powder bed fusion 19. Yao YT, Yang Y, Ye Q, et al. Effects of pore size and porosity
for enhanced bony-ingrowth implants: In vitro and in vivo on cytocompatibility and osteogenic differentiation of
validation. Bioact Mater. 2022;7:3-13. porous titanium. J Mater Sci Mater Med. 2021;32(6):72.
doi: 10.1016/j.bioactmat.2021.05.025 doi: 10.1007/s10856-021-06548-0
9. Li L, Li Y, Yang L, et al. Polydopamine coating promotes 20. Cuan-Urquizo E, Silva RG. Fused filament fabrication
early osteogenesis in 3D printing porous Ti6Al4V scaffolds. of cellular, lattice and porous mechanical metamaterials:
Ann Transl Med. 2019;7(11):240. A review. Virtual Phys Prototyp. 2023;1(18):e2224300.
doi: 10.21037/atm.2019.04.79 doi: 10.1080/17452759.2023.2224300
Volume 10 Issue 2 (2024) 225 doi: 10.36922/ijb.1698

