Page 235 - IJB-10-2
P. 235
International Journal of Bioprinting Property of scaffolds with different lattices
44. Winther NS, Jensen CL, Jensen CM, et al. Comparison laser melting (SLM) for bone implant applications.
of a novel porous titanium construct (Regenerex(R)) to Acta Materialia. 2018;158:15.
a well proven porous coated tibial surface in cementless doi: 10.3390%2Fjfb14030125
total knee arthroplasty - A prospective randomized 52. Li JL, Guo D, L J, et al. Irregular pore size of degradable
RSA study with two-year follow-up. Knee. 2016;23(6): bioceramic Voronoi scaffolds prepared by stereolithography:
1002-1011. Osteogenesis and computational fluid dynamics analysis.
doi: 10.1016/j.knee.2016.09.010 Mater Des. 2022;224:111414.
45. Arts M, Torensma B, Wolfs J. Porous titanium cervical doi: 10.1016/j.matdes.2022.111414
interbody fusion device in the treatment of degenerative 53. Li J, Chen D, Luan H, Zhang Y, Fan Y. Numerical evaluation
cervical radiculopathy; 1-year results of a prospective and prediction of porous implant design and flow
controlled trial. Spine J. 2020;20(7):1065-1072. performance. Biomed Res Int. 2018;2018:1215021.
doi: 10.1016/j.spinee.2020.03.008 doi: 10.1155%2F2018%2F1215021
46. Ibhadode O, Zhang Z, Sixt J, et al. Topology optimization 54. Li J, Chen D, Fan Y, Evaluation and prediction of mass
for metal additive manufacturing: current trends, transport properties for porous implant with different unit
challenges, and future outlook. Virtual Phys Prototyp. cells: A numerical study. Biomed Res Int. 2019;2019:3610785.
2023;1(18):e2181192. doi: 10.1155/2019/3610785
doi: 10.1080/17452759.2023.2181192
55. Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D. 3-D
47. Ahmadi SM, Yavari SA, Wauthle R, et al. Additively manufactured computational modeling of media flow through scaffolds in
open-cell porous biomaterials made from six different space- a perfusion bioreactor. J Biomech. 2005;38(3):543-549.
filling unit cells: The mechanical and morphological properties. doi: 10.1016/j.jbiomech.2004.04.011
Materials (Basel). 2015;8(4):1871-1896.
doi: 10.3390%2Fma8041871 56. Cartmell SH, Porter BD, Garcia AJ, Guldberg RE. Effects of
medium perfusion rate on cell-seeded three-dimensional
48. Hedayati R, Sadighi M, Mohammadi-Aghdam M, et al. bone constructs in vitro. Tissue Eng. 2003;9(6):1197-1203.
Mechanics of additively manufactured porous biomaterials doi: 10.1089/10763270360728107
based on the rhombicuboctahedron unit cell. J Mech Behav
Biomed Mater. 2016;53:272-294. 57. Raimondi MT, Boschetti F, Falcone L, et al. Mechanobiology
doi: 10.1016/j.jmbbm.2015.07.013 of engineered cartilage cultured under aquantified fluid-
dynamic environment. Biomechan Model Mechanobiol.
49. Matena J, Petersen S, Gieseke M, et al. SLM produced 2002;1(1):14.
porous titanium implant improvements for enhanced doi: 10.1007/s10237-002-0007-y
vascularization and osteoblast seeding. Int J Mol Sci;
2015;16(4):7478-7492. 58. Van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry
doi: 10.3390%2Fijms16047478 on the in vitro biological behavior of human periosteum-derived
cells seeded on selective laser-melted Ti6Al4V bone scaffolds.
50. Gogolewski D, Kozior T, Zmarzly P, Gogolewski D. Acta Biomater. 2012;8(7):2824-2834.
Morphology of models manufactured by SLM technology doi: 10.1016/j.actbio.2012.04.001
and the Ti6Al4V titanium alloy designed for medical 59. Rudrich U, Lasgorceix M, Champion E, et al. Pre-osteoblast
applications. Materials (Basel). 2021;14(21). cell colonization of porous silicon substituted hydroxyapatite
doi: 10.3390/ma14216249
bioceramics: Influence of microporosity and macropore
51. Ataee A, Li Y, Brandt M, Wen C. Ultrahigh-strength design. Mater Sci Eng C Mater Biol Appl. 2019;97:510-528.
titanium gyroid scaffolds manufactured by selective doi: 10.1016/j.msec.2018.12.046
Volume 10 Issue 2 (2024) 227 doi: 10.36922/ijb.1698

