Page 235 - IJB-10-2
P. 235

International Journal of Bioprinting                                Property of scaffolds with different lattices




            44.   Winther NS, Jensen CL, Jensen CM, et al. Comparison   laser  melting  (SLM)  for  bone  implant  applications.
               of a novel porous titanium construct (Regenerex(R)) to   Acta Materialia. 2018;158:15.
               a  well  proven  porous  coated  tibial  surface  in cementless      doi: 10.3390%2Fjfb14030125
               total knee arthroplasty - A prospective randomized   52.   Li JL, Guo D, L J, et al. Irregular pore size of degradable
               RSA study with two-year follow-up.  Knee.  2016;23(6):   bioceramic Voronoi scaffolds prepared by stereolithography:
               1002-1011.                                         Osteogenesis and computational fluid dynamics analysis.
               doi: 10.1016/j.knee.2016.09.010                    Mater Des. 2022;224:111414.
            45.   Arts M, Torensma B, Wolfs J. Porous titanium cervical      doi: 10.1016/j.matdes.2022.111414
               interbody fusion device in the treatment of degenerative   53.   Li J, Chen D, Luan H, Zhang Y, Fan Y. Numerical evaluation
               cervical radiculopathy; 1-year results of a prospective   and prediction of porous implant design and flow
               controlled trial. Spine J. 2020;20(7):1065-1072.   performance. Biomed Res Int. 2018;2018:1215021.
               doi: 10.1016/j.spinee.2020.03.008                  doi: 10.1155%2F2018%2F1215021
            46.   Ibhadode O, Zhang Z, Sixt J, et al. Topology optimization   54.   Li J, Chen D, Fan Y, Evaluation and prediction of mass
               for metal additive manufacturing: current trends,   transport properties for porous implant with different unit
               challenges, and future outlook.  Virtual Phys Prototyp.   cells: A numerical study. Biomed Res Int. 2019;2019:3610785.
               2023;1(18):e2181192.                               doi: 10.1155/2019/3610785
               doi: 10.1080/17452759.2023.2181192
                                                               55.   Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D. 3-D
            47.   Ahmadi SM, Yavari SA, Wauthle R, et al. Additively manufactured   computational modeling of media flow through scaffolds in
               open-cell porous biomaterials made from six different space-  a perfusion bioreactor. J Biomech. 2005;38(3):543-549.
               filling unit cells: The mechanical and morphological properties.      doi: 10.1016/j.jbiomech.2004.04.011
               Materials (Basel). 2015;8(4):1871-1896.
               doi: 10.3390%2Fma8041871                        56.   Cartmell SH, Porter BD, Garcia AJ, Guldberg RE. Effects of
                                                                  medium perfusion rate on cell-seeded three-dimensional
            48.   Hedayati  R,  Sadighi  M,  Mohammadi-Aghdam  M,  et  al.   bone constructs in vitro. Tissue Eng. 2003;9(6):1197-1203.
               Mechanics of additively manufactured porous biomaterials      doi: 10.1089/10763270360728107
               based on the rhombicuboctahedron unit cell. J Mech Behav
               Biomed Mater. 2016;53:272-294.                  57.   Raimondi MT, Boschetti F, Falcone L, et al. Mechanobiology
               doi: 10.1016/j.jmbbm.2015.07.013                   of engineered cartilage cultured under aquantified fluid-
                                                                  dynamic environment.  Biomechan Model Mechanobiol.
            49.   Matena J, Petersen S, Gieseke M,  et al. SLM produced   2002;1(1):14.
               porous titanium implant improvements for enhanced      doi: 10.1007/s10237-002-0007-y
               vascularization and osteoblast seeding.  Int J Mol Sci;
               2015;16(4):7478-7492.                           58.   Van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry
               doi: 10.3390%2Fijms16047478                        on the in vitro biological behavior of human periosteum-derived
                                                                  cells seeded on selective laser-melted Ti6Al4V bone scaffolds.
            50.   Gogolewski D, Kozior T, Zmarzly P,  Gogolewski D.   Acta Biomater. 2012;8(7):2824-2834.
               Morphology of models manufactured by SLM technology      doi: 10.1016/j.actbio.2012.04.001
               and the Ti6Al4V titanium alloy designed for medical   59.   Rudrich U, Lasgorceix M, Champion E, et al. Pre-osteoblast
               applications. Materials (Basel). 2021;14(21).      cell colonization of porous silicon substituted hydroxyapatite
               doi: 10.3390/ma14216249
                                                                  bioceramics: Influence of microporosity and macropore
            51.   Ataee A, Li Y, Brandt M,  Wen C. Ultrahigh-strength   design. Mater Sci Eng C Mater Biol Appl. 2019;97:510-528.
               titanium gyroid scaffolds manufactured by selective      doi: 10.1016/j.msec.2018.12.046






















            Volume 10 Issue 2 (2024)                       227                                doi: 10.36922/ijb.1698
   230   231   232   233   234   235   236   237   238   239   240