Page 372 - IJB-10-2
P. 372
International Journal of Bioprinting 3D bioprinting for vascular regeneration
50. Mitchell MJ, Billingsley MM, Haley RM, et al., 2021, 58. Falke LL, van Vuuren SH, Kazazi-Hyseni F, et al., 2015, Local
Engineering precision nanoparticles for drug delivery. Nat therapeutic efficacy with reduced systemic side effects by
Rev Drug Discov, 20(2):101-124. rapamycin-loaded subcapsular microspheres. Biomaterials,
doi: 10.1038/s41573-020-0090-8 42:151-160.
doi: 10.1016/j.biomaterials.2014.11.042
51. Kasravi M, Ahmadi A, Babajani A, et al., 2023,
Immunogenicity of decellularized extracellular matrix 59. Cheng X, Xie Q, Sun Y, 2023, Advances in nanomaterial-
scaffolds: A bottleneck in tissue engineering and regenerative based targeted drug delivery systems. Front Bioeng
medicine. Biomater Res, 27(1):10. Biotechnol, 11:1177151.
doi: 10.1186/s40824-023-00348-z doi: 10.3389/fbioe.2023.1177151
52. Pinnock CB, Meier EM, Joshi NN, et al., 2016, Customizable 60. Chen EP, Toksoy Z, Davis BA, et al., 2021, 3D bioprinting
engineered blood vessels using 3D printed inserts. Methods, of vascularized tissues for in vitro and in vivo applications.
99:20-27. Front Bioeng Biotechnol, 9:664188.
doi: 10.1016/j.ymeth.2015.12.015 doi: 10.3389/fbioe.2021.664188
53. Kakisis JD, Liapis CD, Breuer C, et al., 2005, Artificial blood 61. Papaioannou TG, Manolesou D, Dimakakos E, et al., 2019, 3D
vessel: The Holy Grail of peripheral vascular surgery. J Vasc bioprinting methods and techniques: Applications on artificial
Surg, 41(2):349-354. blood vessel fabrication. Acta Cardiol Sin, 35(3):284-289.
doi: 10.1016/j.jvs.2004.12.026 doi: 10.6515/ACS.201905_35(3).20181115A
62. Tajabadi M, Goran Orimi H, Ramzgouyan MR, et al., 2022,
54. Marx SO, Totary-Jain H, Marks AR, 2011, Vascular smooth Regenerative strategies for the consequences of myocardial
muscle cell proliferation in restenosis. Circ Cardiovasc infarction: Chronological indication and upcoming visions.
Interv, 4(1):104-111. Biomed Pharmacother, 146:112584
doi: 10.1161/CIRCINTERVENTIONS.110.957332 doi: 10.1016/j.biopha.2021.112584
55. Huang C, Zhao J, Zhu Y, 2020, Drug-eluting stent targeting 63. Craparo EF, Cabibbo M, Conigliaro A, et al., 2021,
Sp-1-attenuated restenosis by engaging YAP-mediated Rapamycin-loaded polymeric nanoparticles as an advanced
vascular smooth muscle cell phenotypic modulation. J Am formulation for macrophage targeting in atherosclerosis.
Heart Assoc, 9(1):e014103. Pharmaceutics, 13(4).
doi: 10.1161/JAHA.119.014103 doi: 10.3390/pharmaceutics13040503
56. Huang C, Zhang W, Zhu Y, 2019, Drug-eluting stent specifically 64. Shi Y, Jiao C, Lu X, et al., 2022, Rapamycin nanoparticles
designed to target vascular smooth muscle cell phenotypic improves drug bioavailability in PLAM treatment by
modulation attenuated restenosis through the YAP pathway. interstitial injection. Orphanet J Rare Dis, 17(1):349.
Am J Physiol Heart Circ Physiol, 317(3):H541-H551. doi: 10.1186/s13023-022-02511-6
doi: 10.1152/ajpheart.00089.2019
65. Chen Y, Zeng Y, Zhu X, et al., 2021, Significant difference between
57. Yetisgin AA, Cetinel S, Zuvin M, et al., 2020, Therapeutic sirolimus and paclitaxel nanoparticles in anti-proliferation
nanoparticles and their targeted delivery applications. effect in normoxia and hypoxia: The basis of better selection of
Molecules, 25(9). atherosclerosis treatment. Bioact Mater, 6(3):880-889.
doi: 10.3390/molecules25092193 doi: 10.1016/j.bioactmat.2020.09.005
Volume 10 Issue 2 (2024) 364 doi: 10.36922/ijb.1465

