Page 372 - IJB-10-2
P. 372

International Journal of Bioprinting                                 3D bioprinting for vascular regeneration




            50.  Mitchell MJ, Billingsley MM, Haley RM, et al., 2021,   58.  Falke LL, van Vuuren SH, Kazazi-Hyseni F, et al., 2015, Local
               Engineering precision nanoparticles for drug delivery. Nat   therapeutic efficacy with reduced systemic side effects by
               Rev Drug Discov, 20(2):101-124.                    rapamycin-loaded subcapsular microspheres. Biomaterials,
               doi: 10.1038/s41573-020-0090-8                     42:151-160.
                                                                  doi: 10.1016/j.biomaterials.2014.11.042
            51.  Kasravi M, Ahmadi A, Babajani A, et al., 2023,
               Immunogenicity of decellularized extracellular matrix   59.  Cheng X, Xie Q, Sun Y, 2023, Advances in nanomaterial-
               scaffolds: A bottleneck in tissue engineering and regenerative   based targeted drug delivery systems.  Front Bioeng
               medicine. Biomater Res, 27(1):10.                  Biotechnol, 11:1177151.
               doi: 10.1186/s40824-023-00348-z                    doi: 10.3389/fbioe.2023.1177151
            52.  Pinnock CB, Meier EM, Joshi NN, et al., 2016, Customizable   60.  Chen EP, Toksoy Z, Davis BA, et al., 2021, 3D bioprinting
               engineered blood vessels using 3D printed inserts. Methods,   of vascularized tissues for in vitro and in vivo applications.
               99:20-27.                                          Front Bioeng Biotechnol, 9:664188.
               doi: 10.1016/j.ymeth.2015.12.015                   doi: 10.3389/fbioe.2021.664188
            53.  Kakisis JD, Liapis CD, Breuer C, et al., 2005, Artificial blood   61.  Papaioannou TG, Manolesou D, Dimakakos E, et al., 2019, 3D
               vessel: The Holy Grail of peripheral vascular surgery. J Vasc   bioprinting methods and techniques: Applications on artificial
               Surg, 41(2):349-354.                               blood vessel fabrication. Acta Cardiol Sin, 35(3):284-289.
               doi: 10.1016/j.jvs.2004.12.026                     doi: 10.6515/ACS.201905_35(3).20181115A
                                                               62.  Tajabadi M, Goran Orimi H, Ramzgouyan MR, et al., 2022,
            54.  Marx SO, Totary-Jain H, Marks AR, 2011, Vascular smooth   Regenerative strategies for the consequences of myocardial
               muscle cell proliferation in restenosis.  Circ Cardiovasc   infarction: Chronological indication and upcoming visions.
               Interv, 4(1):104-111.                              Biomed Pharmacother, 146:112584
               doi: 10.1161/CIRCINTERVENTIONS.110.957332          doi: 10.1016/j.biopha.2021.112584
            55.  Huang C, Zhao J, Zhu Y, 2020, Drug-eluting stent targeting   63.  Craparo EF, Cabibbo M, Conigliaro A, et al., 2021,
               Sp-1-attenuated restenosis by engaging YAP-mediated   Rapamycin-loaded polymeric nanoparticles as an advanced
               vascular smooth muscle cell phenotypic modulation. J Am   formulation for macrophage targeting in atherosclerosis.
               Heart Assoc, 9(1):e014103.                         Pharmaceutics, 13(4).
               doi: 10.1161/JAHA.119.014103                       doi: 10.3390/pharmaceutics13040503
            56.  Huang C, Zhang W, Zhu Y, 2019, Drug-eluting stent specifically   64.  Shi Y, Jiao C, Lu X, et al., 2022, Rapamycin nanoparticles
               designed to target vascular smooth muscle cell phenotypic   improves  drug  bioavailability  in  PLAM  treatment  by
               modulation attenuated restenosis through the YAP pathway.   interstitial injection. Orphanet J Rare Dis, 17(1):349.
               Am J Physiol Heart Circ Physiol, 317(3):H541-H551.     doi: 10.1186/s13023-022-02511-6
               doi: 10.1152/ajpheart.00089.2019
                                                               65.  Chen Y, Zeng Y, Zhu X, et al., 2021, Significant difference between
            57.  Yetisgin AA, Cetinel S, Zuvin M, et al., 2020, Therapeutic   sirolimus and paclitaxel nanoparticles in anti-proliferation
               nanoparticles and their targeted delivery applications.   effect in normoxia and hypoxia: The basis of better selection of
               Molecules, 25(9).                                  atherosclerosis treatment. Bioact Mater, 6(3):880-889.
               doi: 10.3390/molecules25092193                     doi: 10.1016/j.bioactmat.2020.09.005



























            Volume 10 Issue 2 (2024)                       364                                doi: 10.36922/ijb.1465
   367   368   369   370   371   372   373   374   375   376   377