Page 371 - IJB-10-2
P. 371
International Journal of Bioprinting 3D bioprinting for vascular regeneration
27. Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable doi: 10.1016/j.jchromb.2012.09.014
biomaterials and light-based 3D printing strategies 38. Lee JH, Lee SH, Choi SH, et al., 2015, The sulfated polysaccharide
for biomedical applications. Chem Rev, 120(19):
10695-10743. fucoidan rescues senescence of endothelial colony-forming cells
doi: 10.1021/acs.chemrev.9b00810 for ischemic repair. Stem Cells, 33(6):1939-1951.
doi: 10.1002/stem.1973
28. Xu X, Awad A, Robles-Martinez P, et al., 2021, Vat
photopolymerization 3D printing for advanced drug delivery 39. Bonaca MP, Hamburg NM, Creager MA, 2021,
and medical device applications. J Control Release, 329:743-757. Contemporary medical management of peripheral artery
doi: 10.1016/j.jconrel.2020.10.008 disease. Circ Res, 128(12):1868-1884.
doi: 10.1161/CIRCRESAHA.121.318258
29. Ali A, Saeed S, Hussain R, et al., 2023, Synthesis and
characterization of silica, silver-silica, and zinc oxide- 40. Gul F, Janzer SF, 2023, Peripheral Vascular Disease, StatPearls,
silica nanoparticles for evaluation of blood biochemistry, Treasure Island (FL).
oxidative stress, and hepatotoxicity in albino rats. Acs 41. Chin K, 2011, In-stent restenosis: The gold standard has
Omega, 8(23):20900-20911. changed. EuroIntervention, 7(Suppl K):K43-K46.
doi: 10.1021/acsomega.3c01674 doi: 10.4244/EIJV7SKA7
30. Chen S, Greasley SL, Ong ZY, et al., 2020, Biodegradable 42. Rao J, Pan Bei H, Yang Y, et al., 2020, Nitric oxide-producing
zinc-containing mesoporous silica nanoparticles for cancer cardiovascular stent coatings for prevention of thrombosis
therapy. Mater Today Adv, 6:100066. and restenosis. Front Bioeng Biotechnol, 8:578.
doi: 10.1016/j.mtadv.2020.100066 doi: 10.3389/fbioe.2020.00578
31. Waksman R, Ajani AE, Pichard AD, et al., 2004, Oral 43. Perkins LE, 2010, Preclinical models of restenosis and their
rapamycin to inhibit restenosis after stenting of de novo application in the evaluation of drug-eluting stent systems.
coronary lesions: The Oral rapamune to inhibit restenosis Vet Pathol, 47(1):58-76.
(ORBIT) study. J Am Coll Cardiol, 44(7):1386-1392. doi: 10.1177/0300985809352978
doi: 10.1016/j.jacc.2004.06.069
44. Nowicki M, Castro NJ, Rao R, et al., 2017, Integrating three-
32. Rosner D, McCarthy N, Bennett M, 2005, Rapamycin dimensional printing and nanotechnology for musculoskeletal
inhibits human in stent restenosis vascular smooth muscle regeneration. Nanotechnology,28(38):382001.
cells independently of pRB phosphorylation and p53. doi: 10.1088/1361-6528/aa8351
Cardiovasc Res, 66(3):601-610.
doi: 10.1016/j.cardiores.2005.01.006 45. Fischetti T, Borciani G, Avnet S, et al., 2023, Incorporation/
enrichment of 3D bioprinted constructs by biomimetic
33. Voisard R, Zellmann S, Muller F, et al., 2007, Sirolimus
inhibits key events of restenosis in vitro/ex vivo: Evaluation nanoparticles: Tuning printability and cell behavior in bone
of the clinical relevance of the data by SI/MPL- and SI/DES- models. Nanomaterials (Basel), 13(14).
ratios. BMC Cardiovasc Disord, 7:15. doi: 10.3390/nano13142040
doi: 10.1186/1471-2261-7-15 46. Johannesson J, Pathare MM, Johansson M, et al., 2023,
34. Brara PS, Moussavian M, Grise MA, et al., 2003, Pilot trial Synergistic stabilization of emulsion gel by nanoparticles
of oral rapamycin for recalcitrant restenosis. Circulation, and surfactant enables 3D printing of lipid-rich solid oral
107(13):1722-1724. dosage forms. J Colloid Interface Sci, 650(Pt B):1253-1264.
doi: 10.1161/01.CIR.0000066282.05411.17 doi: 10.1016/j.jcis.2023.07.055
35. Kim J, Kim HS, Lee N, et al., 2008, Multifunctional uniform 47. Remaggi G, Bergamonti L, Graiff C, et al., 2023, Rapid
nanoparticles composed of a magnetite nanocrystal core prototyping of 3D-printed AgNPs- and nano-TiO(2)-embedded
and a mesoporous silica shell for magnetic resonance and hydrogels as novel devices with multiresponsive antimicrobial
fluorescence imaging and for drug delivery. Angew Chem Int capability in wound healing. Antibiotics (Basel), 12(7).
Ed Engl, 47(44):8438-8441. doi: 10.3390/antibiotics12071104
doi: 10.1002/anie.200802469 48. Liu Y, Li K, Liu B, et al., 2010, A strategy for precision
36. Zhou Q, Doherty J, Akk A, et al., 2022, Safety profile of rapamycin engineering of nanoparticles of biodegradable copolymers
perfluorocarbon nanoparticles for preventing cisplatin-induced for quantitative control of targeted drug delivery.
kidney injury. Nanomaterials (Basel), 12(3). Biomaterials, 31(35):9145-9155.
doi: 10.3390/nano12030336 doi: 10.1016/j.biomaterials.2010.08.053
37. Earla R, Cholkar K, Gunda S, et al., 2012, Bioanalytical method 49. Tripathi D, Srivastava M, Rathour K, et al., 2023, A
validation of rapamycin in ocular matrix by QTRAP LC-MS/ promising approach of dermal targeting of antipsoriatic
MS: Application to rabbit anterior tissue distribution by topical drugs via engineered nanocarriers drug delivery systems for
administration of rapamycin nanomicellar formulation. J tackling psoriasis. Drug Metab Bioanal Lett.
Chromatogr B Analyt Technol Biomed Life Sci, 908:76-86. doi: 10.2174/2949681016666230803150329
Volume 10 Issue 2 (2024) 363 doi: 10.36922/ijb.1465

