Page 371 - IJB-10-2
P. 371

International Journal of Bioprinting                                 3D bioprinting for vascular regeneration




            27.  Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable      doi: 10.1016/j.jchromb.2012.09.014
               biomaterials and light-based 3D printing strategies   38.  Lee JH, Lee SH, Choi SH, et al., 2015, The sulfated polysaccharide
               for biomedical applications.  Chem Rev, 120(19):
               10695-10743.                                       fucoidan rescues senescence of endothelial colony-forming cells
               doi: 10.1021/acs.chemrev.9b00810                   for ischemic repair. Stem Cells, 33(6):1939-1951.
                                                                  doi: 10.1002/stem.1973
            28.  Xu X, Awad A, Robles-Martinez P, et al., 2021, Vat
               photopolymerization 3D printing for advanced drug delivery   39.  Bonaca MP, Hamburg NM, Creager MA, 2021,
               and medical device applications. J Control Release, 329:743-757.  Contemporary medical management of peripheral artery
               doi: 10.1016/j.jconrel.2020.10.008                 disease. Circ Res, 128(12):1868-1884.
                                                                  doi: 10.1161/CIRCRESAHA.121.318258
            29.  Ali A, Saeed S, Hussain R,  et al., 2023, Synthesis and
               characterization of silica, silver-silica, and zinc oxide-  40.  Gul F, Janzer SF, 2023, Peripheral Vascular Disease, StatPearls,
               silica nanoparticles for evaluation of blood biochemistry,   Treasure Island (FL).
               oxidative  stress,  and  hepatotoxicity  in  albino  rats.  Acs   41.  Chin K, 2011, In-stent restenosis: The gold standard has
               Omega, 8(23):20900-20911.                          changed. EuroIntervention, 7(Suppl K):K43-K46.
               doi: 10.1021/acsomega.3c01674                      doi: 10.4244/EIJV7SKA7
            30.  Chen S, Greasley SL, Ong ZY, et al., 2020, Biodegradable   42.  Rao J, Pan Bei H, Yang Y, et al., 2020, Nitric oxide-producing
               zinc-containing mesoporous silica nanoparticles for cancer   cardiovascular stent coatings for prevention of thrombosis
               therapy. Mater Today Adv, 6:100066.                and restenosis. Front Bioeng Biotechnol, 8:578.
               doi: 10.1016/j.mtadv.2020.100066                   doi: 10.3389/fbioe.2020.00578
            31.  Waksman R, Ajani AE, Pichard AD, et al., 2004, Oral   43.  Perkins LE, 2010, Preclinical models of restenosis and their
               rapamycin to inhibit restenosis after stenting of de novo   application in the evaluation of drug-eluting stent systems.
               coronary lesions: The Oral rapamune to inhibit restenosis   Vet Pathol, 47(1):58-76.
               (ORBIT) study. J Am Coll Cardiol, 44(7):1386-1392.     doi: 10.1177/0300985809352978
               doi: 10.1016/j.jacc.2004.06.069
                                                               44.  Nowicki M, Castro NJ, Rao R, et al., 2017, Integrating three-
            32.  Rosner D, McCarthy N, Bennett M, 2005, Rapamycin   dimensional printing and nanotechnology for musculoskeletal
               inhibits human in stent restenosis vascular smooth muscle   regeneration. Nanotechnology,28(38):382001.
               cells independently of pRB phosphorylation and p53.      doi: 10.1088/1361-6528/aa8351
               Cardiovasc Res, 66(3):601-610.
               doi: 10.1016/j.cardiores.2005.01.006            45.  Fischetti T, Borciani G, Avnet S, et al., 2023, Incorporation/
                                                                  enrichment of  3D  bioprinted  constructs  by biomimetic
            33.  Voisard R, Zellmann S, Muller F, et al., 2007, Sirolimus
               inhibits key events of restenosis in vitro/ex vivo: Evaluation   nanoparticles: Tuning printability and cell behavior in bone
               of the clinical relevance of the data by SI/MPL- and SI/DES-  models. Nanomaterials (Basel), 13(14).
               ratios. BMC Cardiovasc Disord, 7:15.               doi: 10.3390/nano13142040
               doi: 10.1186/1471-2261-7-15                     46.  Johannesson  J, Pathare  MM,  Johansson  M, et al.,  2023,
            34.  Brara PS, Moussavian M, Grise MA, et al., 2003, Pilot trial   Synergistic stabilization of emulsion gel by nanoparticles
               of oral rapamycin for recalcitrant restenosis.  Circulation,   and surfactant enables 3D printing of lipid-rich solid oral
               107(13):1722-1724.                                 dosage forms. J Colloid Interface Sci, 650(Pt B):1253-1264.
               doi: 10.1161/01.CIR.0000066282.05411.17            doi: 10.1016/j.jcis.2023.07.055
            35.  Kim J, Kim HS, Lee N, et al., 2008, Multifunctional uniform   47.  Remaggi G, Bergamonti L, Graiff C, et al., 2023, Rapid
               nanoparticles composed of a magnetite nanocrystal core   prototyping of 3D-printed AgNPs- and nano-TiO(2)-embedded
               and a mesoporous silica shell for magnetic resonance and   hydrogels as novel devices with multiresponsive antimicrobial
               fluorescence imaging and for drug delivery. Angew Chem Int   capability in wound healing. Antibiotics (Basel), 12(7).
               Ed Engl, 47(44):8438-8441.                         doi: 10.3390/antibiotics12071104
               doi: 10.1002/anie.200802469                     48.  Liu  Y,  Li  K,  Liu  B, et al.,  2010,  A  strategy  for  precision
            36.  Zhou Q, Doherty J, Akk A, et al., 2022, Safety profile of rapamycin   engineering of nanoparticles of biodegradable copolymers
               perfluorocarbon nanoparticles for preventing cisplatin-induced   for quantitative control of targeted drug delivery.
               kidney injury. Nanomaterials (Basel), 12(3).       Biomaterials, 31(35):9145-9155.
               doi: 10.3390/nano12030336                          doi: 10.1016/j.biomaterials.2010.08.053
            37.  Earla R, Cholkar K, Gunda S, et al., 2012, Bioanalytical method   49.  Tripathi D, Srivastava M, Rathour K, et al., 2023, A
               validation of rapamycin in ocular matrix by QTRAP LC-MS/  promising approach of dermal targeting of antipsoriatic
               MS: Application to rabbit anterior tissue distribution by topical   drugs via engineered nanocarriers drug delivery systems for
               administration of rapamycin nanomicellar formulation.  J   tackling psoriasis. Drug Metab Bioanal Lett.
               Chromatogr B Analyt Technol Biomed Life Sci, 908:76-86.     doi: 10.2174/2949681016666230803150329


            Volume 10 Issue 2 (2024)                       363                                doi: 10.36922/ijb.1465
   366   367   368   369   370   371   372   373   374   375   376