Page 84 - IJB-10-2
P. 84

International Journal of Bioprinting                                         Advancements in 3D printing




            63.  Zafar MS. Prosthodontic applications of polymethyl   74.  Sheffey VV, Siew EB, Tanner EEL, Eniola-Adefeso O. PLGA’s
               methacrylate  (PMMA):  an   update.  Polymers.     plight and the role of stealth surface modification strategies
               2020;12(10):2299-2333.                             in its use for intravenous particulate drug delivery.  Adv
               doi: 10.3390/polym12102299                         Healthc Mater. 2022;11(8):1536-1569.
                                                                  doi: 10.1002/adhm.202101536
            64.  Kwak  G,  Jeong  YS,  Kim  SW,  et  al.  Hybrid  photothermal
               structure based on Cr-MgF2 solar absorber/PMMA-  75.  Liu JJ, Qu SX, Suo ZG, Yang W. Functional hydrogel coatings.
               graphene heat reservoir for enhanced thermoelectric power   Natl Sci Rev. 2021;8(2):nwaa254.
               generation. Nano Energy. 2023;110:108352.          doi: 10.1093/nsr/nwaa254
               doi: 10.1016/j.nanoen.2023.108352
                                                               76.  Sun X, Yao FL, Li JJ. Nanocomposite hydrogel-based
            65.  Backes  EH,  Harb  SV,  Beatrice  CAG,   et  al.  strain and pressure sensors: a review.  J  Mater  Chem  A.
               Polycaprolactone usage in additive manufacturing   2020;8(36):18605-18623.
               strategies for tissue engineering applications: a review.      doi: 10.1039/d0ta06965e
               J Biomed Mater Res Part B: Appl Biomater. 2022;110(6):   77.  Shen ZQ, Zhang ZL, Zhang NB, et al. High‐stretchability,
               1479-1503.                                         ultralow‐hysteresis conductingpolymer hydrogel strain
               doi: 10.1002/jbm.b.34997                           sensors for soft machines.  Adv Mater. 2022;34(32):
            66.  Yang YT, Wu HC, Fu QL, et al. 3D-printed polycaprolactone-  3650-3657.
               chitosan based drug delivery implants for personalized      doi: 10.1002/adma.202203650
               administration. Mater Des. 2022;214:110394.     78.  Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels
               doi: 10.1016/j.matdes.2022.110394                  in the clinic. Bioeng Transl Med. 2020;5(2):e10158.
            67.  Singh AP, Prakash O, Kumar S, Shukla A, Maiti P. Poly (lactic      doi: 10.1002/btm2.10158
               acid-co-glycolic acid) as sustained drug delivery vehicle for   79.  Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting:
               melanoma therapy. Mater Today Commun. 2022;31:103661.   a comprehensive review on cell-laden hydrogels, bioink
               doi: 10.1016/j.mtcomm.2022.103661                  formulations, and future perspectives.  Appl  Mater  Today.
            68.  Lin JL, Huang JC, Wu J, Tang B, Li CB, Xiao HJ. Poly   2020;18:100479.
               (lactic acid-co-glycolic acid)-based celecoxib extended-     doi: 10.1016/j.apmt.2019.100479
               release  microspheres  for  the  local  treatment  of  traumatic   80.  Ye  WL,  Yang  Z,  Cao  FY,  et  al.  Articular  cartilage
               heterotopic ossification.  J Biomater Appl. 2022;36(8):   reconstruction with TGF-β1-simulating self-assembling
               1458-1468.                                         peptide hydrogel-based composite scaffold. Acta Biomater.
               doi: 10.1177/08853282211056937                     2022;146:94-106.
            69.  Diedkova K, Pogrebnjak AD, Kyrylenko S,  et al.      doi: 10.1016/j.actbio.2022.05.012
               Polycaprolactone–MXene nanofibrous scaffolds for tissue   81.  Sharma A, Panwar V, Mondal B, et al. Electrical stimulation
               engineering.  ACS Appl Mater Interfaces. 2023;15(11):   induced by a piezo-driven triboelectric nanogenerator and
               14033-14047.                                       electroactive hydrogel composite, accelerate wound repair.
               doi: 10.1021/acsami.2c22780                        Nano Energy. 2022;99:107419.

            70.  Wei JW, Xia X, Xiao SQ, et al. Sequential dual‐biofactor      doi: 10.1016/j.nanoen.2022.107419
               release from the scaffold of mesoporous HA microspheres   82.  Peng W, Li D, Dai KL, et al. Recent progress of collagen,
               and  PLGA  matrix  for  boosting  endogenous  bone   chitosan, alginate and other  hydrogels in  skin repair
               regeneration. Adv Healthc Mater. 2023;624-637.     and wound dressing applications.  Int J Biol Macromol.
               doi: 10.1002/adhm.202300624                        2022;208:400-408.
            71.  Li PF, Ruan LM, Jiang GH, et al. Design of 3D      doi: 10.1016/j.ijbiomac.2022.03.002
               polycaprolactone/ε-polylysine-modified chitosan  fibrous   83.  Li N, Liu W, Zheng XY, et al. Antimicrobial hydrogel with
               scaffolds with incorporation of bioactive factors for   multiple pH-responsiveness for infected burn wound
               accelerating wound healing.  Acta  Biomater. 2022;152:   healing. Nano Res. 2023;23(6):1-10.
               197-209.                                           doi: 10.1007/s12274-023-5751-6
               doi: 10.1016/j.actbio.2022.08.075
                                                               84.  Li HJ, Liang Y, Gao GR, et al. Asymmetric bilayer CNTs-
            72.  Huang YQ, Du ZY, Li K, et al. ROS-scavenging electroactive   elastomer/hydrogel composite as soft actuators with sensing
               polyphosphazene-based core–shell nanofibers for bone   performance. Chem Eng J. 2021;415:128988.
               regeneration. Adv Fiber Mater. 2022;4(4):894-907.      doi: 10.1016/j.cej.2021.128988
               doi: 10.1007/s42765-022-00153-8
                                                               85.  Choi  MY,  Shin  Y,  Lee  HS,  Kim  SY,  Na  JH.  Multipolar
            73.  Long Q, Liu ZH, Shao QW, et al. Autologous skin fibroblast‐  spatial  electric  field  modulation  for  freeform
               based PLGA nanoparticles for treating multiorgan fibrosis.   electroactive hydrogel actuation.  Sci Rep. 2020;10(1):
               Adv Sci. 2022;9(21):856-869.                       2482-2489.
               doi: 10.1002/advs.202200856                        doi: 10.1038/s41598-020-59318-3

            Volume 10 Issue 2 (2024)                        76                                doi: 10.36922/ijb.1752
   79   80   81   82   83   84   85   86   87   88   89