Page 84 - IJB-10-2
P. 84
International Journal of Bioprinting Advancements in 3D printing
63. Zafar MS. Prosthodontic applications of polymethyl 74. Sheffey VV, Siew EB, Tanner EEL, Eniola-Adefeso O. PLGA’s
methacrylate (PMMA): an update. Polymers. plight and the role of stealth surface modification strategies
2020;12(10):2299-2333. in its use for intravenous particulate drug delivery. Adv
doi: 10.3390/polym12102299 Healthc Mater. 2022;11(8):1536-1569.
doi: 10.1002/adhm.202101536
64. Kwak G, Jeong YS, Kim SW, et al. Hybrid photothermal
structure based on Cr-MgF2 solar absorber/PMMA- 75. Liu JJ, Qu SX, Suo ZG, Yang W. Functional hydrogel coatings.
graphene heat reservoir for enhanced thermoelectric power Natl Sci Rev. 2021;8(2):nwaa254.
generation. Nano Energy. 2023;110:108352. doi: 10.1093/nsr/nwaa254
doi: 10.1016/j.nanoen.2023.108352
76. Sun X, Yao FL, Li JJ. Nanocomposite hydrogel-based
65. Backes EH, Harb SV, Beatrice CAG, et al. strain and pressure sensors: a review. J Mater Chem A.
Polycaprolactone usage in additive manufacturing 2020;8(36):18605-18623.
strategies for tissue engineering applications: a review. doi: 10.1039/d0ta06965e
J Biomed Mater Res Part B: Appl Biomater. 2022;110(6): 77. Shen ZQ, Zhang ZL, Zhang NB, et al. High‐stretchability,
1479-1503. ultralow‐hysteresis conductingpolymer hydrogel strain
doi: 10.1002/jbm.b.34997 sensors for soft machines. Adv Mater. 2022;34(32):
66. Yang YT, Wu HC, Fu QL, et al. 3D-printed polycaprolactone- 3650-3657.
chitosan based drug delivery implants for personalized doi: 10.1002/adma.202203650
administration. Mater Des. 2022;214:110394. 78. Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels
doi: 10.1016/j.matdes.2022.110394 in the clinic. Bioeng Transl Med. 2020;5(2):e10158.
67. Singh AP, Prakash O, Kumar S, Shukla A, Maiti P. Poly (lactic doi: 10.1002/btm2.10158
acid-co-glycolic acid) as sustained drug delivery vehicle for 79. Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting:
melanoma therapy. Mater Today Commun. 2022;31:103661. a comprehensive review on cell-laden hydrogels, bioink
doi: 10.1016/j.mtcomm.2022.103661 formulations, and future perspectives. Appl Mater Today.
68. Lin JL, Huang JC, Wu J, Tang B, Li CB, Xiao HJ. Poly 2020;18:100479.
(lactic acid-co-glycolic acid)-based celecoxib extended- doi: 10.1016/j.apmt.2019.100479
release microspheres for the local treatment of traumatic 80. Ye WL, Yang Z, Cao FY, et al. Articular cartilage
heterotopic ossification. J Biomater Appl. 2022;36(8): reconstruction with TGF-β1-simulating self-assembling
1458-1468. peptide hydrogel-based composite scaffold. Acta Biomater.
doi: 10.1177/08853282211056937 2022;146:94-106.
69. Diedkova K, Pogrebnjak AD, Kyrylenko S, et al. doi: 10.1016/j.actbio.2022.05.012
Polycaprolactone–MXene nanofibrous scaffolds for tissue 81. Sharma A, Panwar V, Mondal B, et al. Electrical stimulation
engineering. ACS Appl Mater Interfaces. 2023;15(11): induced by a piezo-driven triboelectric nanogenerator and
14033-14047. electroactive hydrogel composite, accelerate wound repair.
doi: 10.1021/acsami.2c22780 Nano Energy. 2022;99:107419.
70. Wei JW, Xia X, Xiao SQ, et al. Sequential dual‐biofactor doi: 10.1016/j.nanoen.2022.107419
release from the scaffold of mesoporous HA microspheres 82. Peng W, Li D, Dai KL, et al. Recent progress of collagen,
and PLGA matrix for boosting endogenous bone chitosan, alginate and other hydrogels in skin repair
regeneration. Adv Healthc Mater. 2023;624-637. and wound dressing applications. Int J Biol Macromol.
doi: 10.1002/adhm.202300624 2022;208:400-408.
71. Li PF, Ruan LM, Jiang GH, et al. Design of 3D doi: 10.1016/j.ijbiomac.2022.03.002
polycaprolactone/ε-polylysine-modified chitosan fibrous 83. Li N, Liu W, Zheng XY, et al. Antimicrobial hydrogel with
scaffolds with incorporation of bioactive factors for multiple pH-responsiveness for infected burn wound
accelerating wound healing. Acta Biomater. 2022;152: healing. Nano Res. 2023;23(6):1-10.
197-209. doi: 10.1007/s12274-023-5751-6
doi: 10.1016/j.actbio.2022.08.075
84. Li HJ, Liang Y, Gao GR, et al. Asymmetric bilayer CNTs-
72. Huang YQ, Du ZY, Li K, et al. ROS-scavenging electroactive elastomer/hydrogel composite as soft actuators with sensing
polyphosphazene-based core–shell nanofibers for bone performance. Chem Eng J. 2021;415:128988.
regeneration. Adv Fiber Mater. 2022;4(4):894-907. doi: 10.1016/j.cej.2021.128988
doi: 10.1007/s42765-022-00153-8
85. Choi MY, Shin Y, Lee HS, Kim SY, Na JH. Multipolar
73. Long Q, Liu ZH, Shao QW, et al. Autologous skin fibroblast‐ spatial electric field modulation for freeform
based PLGA nanoparticles for treating multiorgan fibrosis. electroactive hydrogel actuation. Sci Rep. 2020;10(1):
Adv Sci. 2022;9(21):856-869. 2482-2489.
doi: 10.1002/advs.202200856 doi: 10.1038/s41598-020-59318-3
Volume 10 Issue 2 (2024) 76 doi: 10.36922/ijb.1752

